
Processable: A Visual Assembly

Debugger and Program Tracer in the

Browser

Robert March Whitaker

A Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Bachelor’s of Arts

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Robert Dondero

June 2018

This Thesis represents my own work in accordance with university

regulations

Robert March Whitaker

c© Copyright by Robert March Whitaker, 2018.

All rights reserved.

Abstract

We present a web application for debugging and tracing programs written in x86-64

assembly. Given that assembly programming is notoriously difficult for students to

learn, this visual environment aims to provide students with intuition for the behavior

of programs at a lower level of abstraction than similar tools designed for tracing high

level languages. We also present a javascript library for working with fixed-width

integers and emulating ALU behavior, and an extensible assembly emulator (also in

javascript), that were developed during this project in support of the visual debugger.

By keeping the entire project in javascript, the application can be run without a

webserver, and once hosted, can be accessed by a student with no installation.

iii

Acknowledgements

This work would not have been possible without the support of a huge number of

people, only some of whom I am able to include here.

First of all, I would like to thank my advisor, Bob Dondero, for his unwavering

support over the last year and half, for allowing me to take on an ambitious project,

and for continuously reminding me to leave time for writing. I’d also like to thank

Iasonas Petras and Donna Gabai for volunteering to be guinea pigs for the first version

of my project, and for all their helpful feedback, and Professor Szymon Rusinkiewicz

for letting my project further tested on COS217 students this Spring. I also owe some

thanks indirectly to Professor Andrew Appel, for pushing for the switch of COS217

to ARM, keeping me on my toes and forcing my project to become more modular

and extensible.

I want to thank my friends for bearing with me through this whole project, and

listening to me go on about debuggers for inhumane amounts of time. Thanks to Josh

Becker, Eric Mitchell, and Lukas Novak for looking at early versions of the project,

and giving me great feedback and encouragement. Thank you to Terrace F. Club,

putting a roof over my head and feeding me half the time, and to the Pink House for

adopting me and giving me food and shelter the other half, and making me realize

that while food is love, radish butter is better than both. And to Anna Maritz, for

being my light at the end of the tunnel and guiding star, bringing me coffee and

kombucha all hours of the day, and listening to me rant about computers for hours

without holding it against me.

Finally, I would like to thank my parents, for raising me to work hard, stay humble,

and remember to take a break sometimes.

iv

To my teachers

v

Contents

Abstract . iii

Acknowledgements . iv

List of Figures . ix

1 Introduction 1

1.1 Problem Definition . 4

2 Background and Related Work 8

2.1 Debuggers . 8

2.2 Emulation . 10

2.2.1 Qemu and Unicorn . 10

2.2.2 Emscripten and Unicorn.js . 11

2.3 Visualization Tools . 13

2.3.1 Evaluation and Classification of Visualization Tools 13

2.3.2 Tools focusing on High Level Languages 14

2.3.3 Tools Focusing on Assembly Language 16

3 Functionality 19

3.1 Use Cases . 19

3.2 Features . 21

3.2.1 Toggleable Decodings . 22

3.2.2 gdb Commands . 23

vi

3.3 Limitations . 24

3.3.1 x86 Instructions . 24

3.3.2 C Standard Library . 24

3.3.3 Addresses and Machine code 25

3.3.4 Runtime . 25

4 Implementation 26

4.1 The FixedInt Library . 28

4.1.1 The FixedInt data type . 30

4.1.2 The FixedInt ALU . 33

4.2 The Emulator . 35

4.2.1 The Assembler . 36

4.2.2 The Process Object . 37

4.2.3 Parsing . 38

4.2.4 Registers . 39

4.2.5 Memory . 41

4.2.6 Instruction Set(s) . 43

4.2.7 C Library Calls . 44

4.3 Front-end and Debugger . 45

5 Evaluation and Conclusions 48

5.1 User Evaluation . 48

5.1.1 Evaluations by Instructors . 48

5.1.2 Evaluations by Students . 51

5.2 Performance Evaluation . 52

5.2.1 Instruction Support . 53

5.3 Future Work . 53

5.3.1 Minor Improvements . 53

vii

5.3.2 Improving Architecture Support 54

5.3.3 Compilation from C . 55

5.4 Project Evaluation . 56

5.5 Conclusion . 57

A Supplemental Figures 59

B Sample Assembly Programs 62

C Materials used for Project Evaluation 66

C.1 Preliminary Evaluation Script . 66

C.2 Student Feedback Form . 68

Bibliography 69

viii

List of Figures

1.1 Snapshots of program traces at various levels of detail 2

2.1 (a) A screenshot of the Python Tutor visualizer output, in the middle

of executing an implementation of quicksort. (b) The structure of the

trace object returned from the Python Tutor server 15

2.2 Screenshot of a web-based x86 assembly visualizer backed by

Unicorn.js[6]. 16

2.3 Screenshot of another web-based x86 visualizer, based on a custom

javascript runtime developed in a project known as asm86.[12] 17

3.1 A series of screenshots of the Processable interface illustrating the pro-

cess of loading and running a program. 21

3.2 Screenshots of the decoding options available for the stack on (a) the

same 4-byte region and (b) a larger region with multiple decodings of

different sizes . 23

3.3 C standard library functions supported by Processable 25

4.1 A high-level overview of the packages that comprise Processable . . . 27

4.2 API for the FixedInt data type . 31

4.3 API for the FixedInt ALU . 33

ix

4.4 A diagram of the Process object and its subordinates. The parser and

runtime modules each inject methods directly onto the process object,

while the memory, registers, lib, and chip modules are tacked on as

extensions. 37

4.5 Illustration of overlapping registers and encoding of the register de-

scription object. 40

4.6 Cartoon depicting the organization of the Memory object and its sub-

ordinates . 42

5.1 Instructions supported by Processable and their popularity. 52

A.1 Screenshots of decoding options available for static sections. 59

A.2 Screenshots of decoding options available for the heap 59

A.3 Screenshots of decoding options available for registers 60

A.4 Screenshot of the Processable welcome screen, with options to upload

a file or select an example. 60

A.5 Screenshot of the Processable interface during program execution, with

the heap view toggled on . 61

A.6 A screenshot of the processable prototype, developed in July 2017 . . 61

x

Chapter 1

Introduction

Programming is difficult[27]. Assembly programming is especially difficult, and

presents so many potential pitfalls that the entire computer science community has

largely abandoned it in favor of structured programming in high level languages.

Flat control structures such as the goto or jump statement, have been derided as

harmful[13], however it is still the case that most all computer architectures rely on

an instruction set that requires such flat programming. As such, writing code at the

lowest level presents an inherently difficult problem, and this is difficulty is especially

apparent to students as they learn their first assembly language. As the practice is

mostly reserved for systems experts and operating systems developers, many of the

resources available assume an expert audience. Architecture manuals are extremely

dense, and describe chip behavior without developing intuition for how one would

compose an assembly program.

For high level languages and assembly languages alike, one of the best teaching

tools in the instructor’s toolbelt is the program trace. That is, one of the most ef-

fective ways of conveying programming intuition for any language is to visualize the

state of the program’s runtime environment at various critical points during execu-

tion. Despite program behavior usually being deterministic, the process of tracing

1

Figure 1.1: Snapshots of program traces at various levels of detail

(a) (b)

(c)

is most often done ad hoc, by hand at the blackboard. We rely on an instructor’s

understanding of a program to translate its static specification in code to its dynamic

execution as a process. A program trace can be performed in varying levels of depth

from a very abstract box and arrows diagram like that in Figure 1.1(a), to a more re-

alistic layout which suggests more about the arrangement of the data in memory as in

Figure 1.1(b), to a literal dump of each of the program’s bytes in order, Figure 1.1(c).

As useful as the program trace is, it has been found that students often struggle

with the ability to generate a trace of their own. Further, being able to correctly trace

a program has been shown to be directly correlated with performance on a number

of different types of problems[32].

In introductory computer science classes, generating these traces is a task that

instructors must perform repeatedly by hand. To make traces that can be reused,

often instructors must hand draw a representation of a process at each step in ex-

ecution, or even more painstakingly generate a series of images by hand or using a

presentation tool. For the sake of both novice programmers and computer science

instructors, we would like to simplify the process of generating these program traces.

2

Specifically, this is an application that, given a process in a particular state, can gen-

erate a detailed graphical representation of that process. The natural extension of

this tool would also be able to interact with the process as a debugger’s inferior, and

allow the user to set breakpoints, step, and continue the process, all while being able

to inspect the visual representation of the program’s state.

It is interesting that this task is not so easily automated, despite the fact that

the task of mapping a program to a process is exactly what the machine performs

whenever a program is run. The problem lies in the fact that the goals of teaching

programming and running programs are often in direct conflict with each other. En-

gineers typically want programs to execute as quickly as possible, without requiring

input from users. After all, one does not need to verify each step of a correctly im-

plemented program every time it is executed. Students and educators on the other

hand are typically interested in slowing programs down and inspecting their state in

order to better understand them. As such, program visualization is an area of active

research, and in this paper we will consider it from a number of angles. Many suc-

cessful program visualizers have been developed already: from simple but incredibly

popular tools like pythontutor.com, which give box-and-arrows traces of high level

programming languages in execution, to such ambitious projects as Luna: a func-

tional programming language in which every program maps one-to-one with a visual

representation[3]. However the discipline has also received plenty of criticism, even

by such notable figures as Dijkstra:

I was recently exposed to... what.., pretended to be educational software

for an introductory programming course. With its “visualizations” on the

screen, it was.., an obvious case of curriculum infantilization We must

expect from that system permanent mental damage for most students

exposed to it.[14]

In order to avoid similar criticisms, we take a methodical approach to developing

a program tracer and visual debugger which we name Processable. The structure of

3

pythontutor.com

this paper is as follows: first, we clearly define the problem we are trying to solve,

and identify the concepts we would like to teach, and the properties the final appli-

cation should have. Then we review background material related to debuggers and

emulators, and investigate some similar tools to identify strengths and weaknesses.

We then present the Processable application, its use cases, features, and limitations,

before engaging in a more thorough exploration of its implementation. Finally, we

evaluate the success of the project on a number of metrics, and discuss opportunities

for future work.

1.1 Problem Definition

What we identify here is a gap in available resources for students for visualizing low-

level computer behavior. While significant progress has been made in flexible tools for

visualizing high-level programming concepts, the same is not true for systems-level

and assembly programs. Given the success of these tools in contributing to students’

understanding of structured programs and algorithms, we are motivated to develop

an equivalent application that can be used for tracing assembly programs.

To better define the problem we aim to solve, we would like to enumerate the

specific concepts that students are being taught by learning an assembly language that

are distinct from those taught in higher level languages. We still draw on the principle

in computer science education that concepts are much more important than any

particular language or environment. While narrowing the focus to assembly language

seems contradictory to this goal, we note that in addition to their particular syntax,

assembly languages also introduce a number of new ideas that are shared between

architectures and syntaxes. In programming courses that use an assembly language

for teaching, the focus remains on the following low-level and systems concepts:

4

1. Addresses and virtual memory areas: One of the key distinctions between

assembly and higher level programming is the explicit use of data addressing,

and the separation of data into different virtual memory areas with different

runtime properties and permissions. Accessing global data in statically allocated

.data, .rodata, and .bss sections are often not distinguished in higher level

languages, but must be explicitly specified in an assembly program, and each

section has distinct permissions and properties.

2. Type-agnostic data: Whether a high level language is statically typed or

dynamically typed, there is still the property that a piece of data exists in a

particular type, and can be manipulated in ways specific to that type. Integers

can exist as signed or unsigned, but these cannot be added together, nor can

either be added to strings. Asking if the character ’a’ is less than the integer

-1 is bound to draw some complaints from a compiler worth its salt. However

in a lower-level view of the program, the distinction does not come from what a

variable is, but how it is interpretted. In an ASCII character encoding scheme

on a little-endian system, the 32-bit 2s-complement integer 2,189,672 has the

same representation as the null-terminated string "hi!".

3. Flat control structures: Another convenience that is lacked by assembly

programs are complex control structures, such as if-else blocks, do-while loops,

and switch statements. Instead, flow of control is implemented entirely as jumps,

which may depend on certain conditions about the running process. This type

programming is so riddled with the potential for bugs that the programming

world has discouraged the inclusion of similar control structures in high level

languages at all.[13] While this luxury is available to high level languages, they

still must define the behavior of the easier-to-reason-about structures in terms

of a single stream of execution from one instruction to the next.

5

4. Function call mechanics: Finally the low-level details of how functions are

called are only exposed at the assembly level. Specifically, this is the pushing

of return addresses onto the stack at a function call, and the lack of robustness

of this behavior to malicious input via buffer overflow. The tool should help

to describe such subtleties in function calling, and how use of stack and base

pointer registers establish each call frame.

Returning to the example program traces of Figure 1.1, intuition for these concepts

can be built by finding a way to combine traces of different levels of detail. The task

of learning assembly language from a higher level language like C, is the process of

adding detail to principles of the higher level language, and learning the relationship

between traces like Figure 1.1(a-b), to that of Figure 1.1(c).

In designing a system for program visualization, we also look to the literature

to identify properties of successful visualization tools. Specifically, the reviews of

Sorva[40, 41] and reports from working groups at the ACM Conferences on Innova-

tions and Technology in Computer Science Education (ITiCSE)[35] lead us to identify

the following goals for the behavior of the application itself.

1. Flexible Input: For a tool to be useful to students in the process of learning

new computer science concepts, it is important that they be able to customize

their usage with the ability to upload arbitrary programs (subject to certain

restrictions of the platform).

2. Interactive: It has been shown[36] that simply providing visualization alone

does not contribute significantly to student understanding, but that students

learn better from interacting with a visual representation. In addition to allow-

ing the student to customize the input, the tool should be able to respond to

user interaction throughout the visualization process.

6

3. Multiple viewing options: It was similarly found in [36] that providing mul-

tiple views on the same data or algorithm was also very helpful for improving

student understanding, and so the user should be able to change the way infor-

mation is presented to best suit their needs.

4. Available to the widest possible audience: Finally, a good teaching tool

should have an easy or no installation, and have minimal technological require-

ments, so that it can be readily used by any student who wishes to use it.

7

Chapter 2

Background and Related Work

The tool presented in this paper is a hybrid of several existing technologies, and here

we review the literature surrounding each to draw inspiration from some of their

design decisions. Specifically, what we propose is a combination of a debugger and

a program visualizer, which is made possible by the use of hardware and software

emulation.

2.1 Debuggers

In general, a debugger is an interactive process that can be used to control and

examine the state of another process, known as the inferior, while it is running.

This may include setting breakpoints to pause execution at a certain location in the

text, watchpoints to pause when a certain address in memory is accessed, or single-

stepping a process to pause after every instruction is executed. While the inferior is

paused, a debugger allows the user to probe or edit its state, by displaying or altering

the contents of different areas of memory.[5] Put another way, debuggers attempt to

slow down its inferior, so that a developer can identify the precise moment when an

unintended behavior manifests.

8

However, as most programs are built to run as fast as possible on their target

architecture, there is often no native way to dump the state of a program in the

middle of execution without editing the source to do so. Especially for compiled

languages, there is no way to take control of a process between instructions to check

if a breakpoint exists at the current address, or provide the user an opportunity

to inspect the program state. Production debuggers solve this problem by taking

advantage of specific system calls provided by the operating system which allow a

parent process to “attach” to its child, and then edit its text section while it runs.1

The process of setting a breakpoint in a compiled program running under a debug-

ger is incredibly complicated, and requires extensive bookkeeping by the debugger,

and significant operating system support. Before any breakpoints can be set, the

inferior must make a system call giving its parent permission to trace it. 2 When

a breakpoint is to be set at a particular address, the debugger will write over the

instruction at that address with a special one-byte trap instruction, making use of a

poke[9] system call. As the debugger and inferior each have separate virtual address

spaces, the actual poking (editing of memory) must be done in the kernel, where the

virtual address of in the inferior can be translated to a physical address. The special

trap instruction must be no longer than a single byte, so as not to overwrite subse-

quent instructions as well, and the operating system must provide a special handler

for this trap which knows how to return control back to the parent debugging pro-

cess.3 With the instruction at the breakpoint overwritten, the inferior can be allowed

to execute on its own, until the trap is hit, at which point the kernel takes control,

1This is the ptrace family of system calls in Unix[30]. While this is not the only way that a
debugger can be built, it is by far the most popular, and is the only feasible way to take control of
another process without a heavily customized operating system.

2This is accomplished with the PTRACE TRACEME request as the first argument to ptrace[30].
This can be accomplished within the debugger after the child is forked from the parent, but before
it execs the inferior

3On x86-64, this is the INT 3 instruction, known only as the “trap interrupt”, and is encoded by
the one-byte opcode 0xCC.[39] As most interrupts are two bytes, (0xCD 0x??), this illustrates that
debuggers require cooperation from the hardware as well as the operating system.

9

recognizes that the process is being debugged, blocks the inferior and finally schedules

the debugger.

We mention the complexity of debuggers only to contrast it with Processable.

In particular, the difficulty of implementing debugging functionality on native code

assembly code is prohibitive, and so we are driven to consider hardware emulation as

an alternative platform on which to build a program visualizer.

2.2 Emulation

As a solution to some of the barriers to debugging posed by real systems, virtual

computer systems offer much more fine-grained control over an execution environ-

ment. While software emulation incurs a major slowdown, it offers significantly more

flexibility than native hardware execution. This flexibility can be summarized by

two major advantages offered by emulation: portability, and customizability. Emula-

tors can be used to run a program compiled for a particular target architecture on

another that may lack the necessary hardware. Additionally, replacing physical hard-

ware behaviors with programmed behavior in software makes it much easier to edit

or augment the capabilities of the hardware being emulated, for example by adding

hooks that can respond to certain events that occur in the emulated environment.

In the context of this project, an emulator could have built-in debugging capabili-

ties, that allow it to manage breakpoints or watchpoints without requiring operating

system and hardware support.

2.2.1 Qemu and Unicorn

One of the gold standards in hardware emulation is the open-source Qemu software,

originally written by Fabrice Bellard. Qemu gives near-perfect emulation of a vari-

ety of architectures, including x86 (and x64), ARM, SPARC, MIPS, PowerPC and

10

others, supporting software virtualization of serial and parallel ports, memory man-

agement units, and drives in addition to the CPU [8]. One of its primary use cases is

for debugging systems software (or an entire operating system), without requiring a

reboot of the host machine. Qemu does not however support built-in debugging, and

one must still use something like gdb to remotely trace the process running on the

emulator.

While Qemu is a remarkable application, it does not serve well as a framework for

developing further applications on top of it. This can be thought of as a side-effect of

Qemu’s accuracy in emulation; there are no side-channels for hooking into a running

process on Qemu, and its fundamental goal is to be a “FAST!” emulator[8]. To answer

this shortcoming, the developers Anh Quynh Nguyen and Hoang Vu Dang created the

Unicorn Framework, by stripping all but the CPU emulation modules from Qemu, and

enhancing it with a set of API bindings (in more than 10 popular programming lan-

guages) for manipulating the instruction emulator, without requiring a full hardware

context to be instantiated[37]. To illustrate this difference, single-stepping a process

in Qemu is almost identical to single-stepping a process on the target architecture:

the virtual hardware trap flag would be set, causing each instruction to trigger an

exception, which would call a handler in the kernel and eventually pass control to

the debugger tracing the process. Using the Unicorn framework, one explicitly sets

start and end addresses for emulation with the Unicorn API, and control remains in

the hands of the emulating application. While both Qemu and Unicorn are tools for

improving software portability, they must in turn be built for the host architecture,

so users must either install a precompiled binary, or build them from scratch.

2.2.2 Emscripten and Unicorn.js

In the world of more unorthodox emulation environments, there is the Emscripten

compiler and software development kit, which aims to provide a similarly flexible ex-

11

ecution environment for the web[43]. Unlike Qemu or Unicorn, which sit between the

host machine and the emulated code at runtime, Emscripten is invoked at compile-

time, and generates an program with equivalent behavior in javascript. Emscripten

works by defining its own virtual machine written in a subset of javascript known as

asm.js[24], and aims for equivalent behavior without necessarily virtualizing any spe-

cific hardware. Rather than taking a program compiled for a particular architecture,

and running it on Emscripten, one uses Emscripten to compile the program’s source

to javascript.

Emscripten doesn’t quite fit our definition of emulator, as it solves the portability

problem (even better than Unicorn and Qemu) but doesn’t give much more flexibility

over a program’s execution on the Emscripten VM. But it does provide an ability

to retarget an exiting emulator for javascript, and combine the extreme portability

offered by javascript to the flexibility provided by unicorn. This is precisely what

Alexandro Bach accomplished with Unicorn.js[6], a javascript port of Unicorn using

Emscripten and is an inspirtation for and close relative to the emulator we present

in this paper. However, Unicorn.js brings with it a few downsides: to start, even

the minified javascript bundle for Unicorn.js is over 20MB, around 40 times larger

than the 90th percentile among the popular sites in recent years[21]. With much of

the world still receiving download speeds under 10 Mbps [16], this would impose a

15 second or longer page load, which is unacceptable. Additionally, the Emscripten

compilation process makes the project impossible to maintain from pure javascript,

and the Unicorn source is sufficiently complex that reading it is does not make for an

educational experience per se.4

4This is not to say that Unicorn.js is not an incredible piece of software, and we will explore other
uses for it in Chapter 6. The goal of the project’s source being an additional educational resource
will be developed further in the discussion of the implementation in Chapter 4.

12

2.3 Visualization Tools

2.3.1 Evaluation and Classification of Visualization Tools

Visualization tools have frequently been a subject area for papers presented at the

ITiCSE, and in addition to a rich collection of visual applications from which we can

draw inspiration, a number of papers and working group reports have appeared which

provide frameworks for evaluating software visualization techniques.[1] Further, pa-

pers as early as those of Myers in 1990[34] have provided taxonomies for classifying

visual applications, so that we may be precise in comparing and contrasting our pro-

posal from existing tools in the field. In particular, we can distinguish between Visual

Programming and Program Visualization. The former is defined by a programming

environment that uses visual elements to define program behavior. Updating some

of the examples used by Myers for 2018, we could categorize as Visual Programming

some domain-specific languages like Max/MSP[4] or PureData[31] which provide vi-

sual interfaces to digital signal processing for music producers, as well as the recently

released functional language Luna[3] which boasts an isomorphic visual and textual

representation of every program, and a custom visual IDE.

This project however is more concerned with the other taxonomy presented by

Myers, of Program Visualization. This type of system is not concerned with creating

new software, but in augmenting existing software with visualizations with the aim

of improving understanding or the debugging experience. In the words of Myers,

Another motivation for using graphics is that it tends to be a higher-level

description of the desired actions (often deemphasizing issues of syntax

and providing a higher level of abstraction) and may therefore make the

programming task easier even for professional programmers. This may be

especially true during debugging, where graphics can be used to present

much more information about the program state (such as current variables

and data structures) than is possible with purely textual displays.[34]

13

The field of program visualization can be further broken along two dimensions

into static and dynamic visualizers, and visualizations targeted to code, data, or al-

gorithms. The first categorization distinguishes between tools that create images

illustrating program state offline, or in a batch fashion, between those that can il-

lustrate program state as the target program is executing, with the opportunity to

possibly edit the program’s trajectory after visualization has begun. The former

restriction may arise from a computational difficulty in generating the desired visu-

alizations in a reasonable amount of time (a problem that has become less pressing

in the nearly 30 years since Myers’ paper), or from an incompatibility between the

environment that executes the program and the one that produces the visualization.

The second dimension for categorizing program visualization systems distinguishes

between code visualization, which attempts to illustrate the logic and flow of control

in a program, data visualization, which illustrates meaningful aspects of a process’

state (i.e. memory), and algorithm visualization, which takes a high-level view of

a particular concept and attempts to animate its behavior at a level of abstraction

above a specific programming language.

The type of tool we propose in this paper would be classified in this taxonomy as a

Dynamic Data Visualization, and these are the types of visual tools that we evaluate

here.

2.3.2 Tools focusing on High Level Languages

The most successful tool in this area by far has been Phillip Guo’s Python Tutor[22],

which since its launch in 2015 has expanded to support similar visualizations for

Java, Javascript, C, C++, and Ruby (as well as Python 2 and 3). The general

architecture is as follows: the user types code in the selected language into an online

editor and submits with a “visualize execution” button. The code is then sent to the

server, and executed in custom sandbox under the supervision of a debugger, with

14

Figure 2.1: (a) A screenshot of the Python Tutor visualizer output, in the middle
of executing an implementation of quicksort. (b) The structure of the trace object
returned from the Python Tutor server

(a) (b)

information about the program’s state logged after every line is executed. A structure

containing this state for each step is then returned to the client, and each is used to

generate a boxes-and-arrows visualization for that point in the program’s execution

(see Figure 2.3.2). While one can step through the program once it has been run, and

flip through each illustration one at a time, it is important to note that the entire

program must be run before any visuals can be displayed. This provides the user the

ability to easily step backwards through a program if desired, but also means that

no program state can be updated during execution, purely as result of this design.5

There also does not appear to be a way to supply the program with command line

arguments, and reads from stdin require an additional round trip to compute the rest

of the program after reading input. Additionally, the sandbox imposes a maximum

of 300 lines of code before it will automatically stop executing[23].

5While Processable does not currently support editing registers and memory during execution, its
runtime environment does, and so allowing this support would be a simple change to the interface.
In contrast, Python Tutor cannot support state manipulation without changing its execution model.

15

It seems that this tool is better classified as a static visualizer, as even the “live

code execution” mode requires full server round-trips that must run the entire pro-

gram and send back the same data structure structure shown in Figure 2.3.2(b).6 At

the same time, with the limit on program length, the backend is able to execute each

and regain responsiveness with minimal delay, and the ability to step backwards in

time is surely a helpful pedagogical tool.

2.3.3 Tools Focusing on Assembly Language

Figure 2.2: Screenshot of a web-based x86 assembly visualizer backed by Unicorn.js[6].
The contents of the registers and memory are editable, but the buttons controlling
program flow are all unimplemented. Memory presented as a single continuous chunk,
and is decoded only as ASCII; register values are displayed in their 32-bit form in
both hexidecimal and signed decimal.

This project is not the first to attempt to apply the success of high level visualiza-

tion tools to lower level programming, but no others appear to have had success on

the level of Python Tutor. One visual debugging tool (shown in Figure 2.2) is built on

6It would be interesting to attempt to replicate this system entirely on the client side, by using
web-enabled runtimes generated written in javascript (such as Brython[38]) or compiled to javascript
with Emscripten, such as pypyjs[29]. This would enable the tool to use dynamic visualization, and
perhaps remove some of the limitations of the sandbox on the server side (such as the lines of
execution maximum), as well as allow users to edit variable values online, as the program is being
visualized.

16

Figure 2.3: Screenshot of another web-based x86 visualizer, based on a custom
javascript runtime developed in a project known as asm86.[12]

top of Unicorn.js, written by Alexandro Bach. Though it appears to be an abandoned

project, it shows some promise as a web front-end for an object code interpreter, with

a built-in disassembler to show corresponding assembly mnemonics. While its github

stars suggest there is certainly interest in this type of tool, it fails to produce more

intuitive traces of assembly programs or provide support for customizable decoding,

nor does it distinguish between static memory areas, the stack, or the heap. The

same front-end is also implemented for MIPS, SPARC, and ARM, though they are

all similarly unfinished, and as mentioned above in our discussion of Unicorn.js, they

all have substantial loading times.

Another low level visualization tool written by Carlos Neves[12] is similar in scope,

but emulates machine behavior with an assembly language interpreter (as does Pro-

cessable). This tool allows users to write assembly language into the browser by

hand, or load one precomposed example which handles external interrupts. My own

experience with the interface felt fairly clunky and unintuitive, as each area other

than the editor opens in its own pseudo-window, as shown in Figure ??. It is also

limited to 32-bit x86 assembly with intel syntax, and appears to put more emphasis

17

on lower level hardware elements, such as EEPROM and interrupt pins. While we

investigated the code for this tool as a potential starting point, it is organized in

such a way as to not lend itself to extensibility or easy maintanence, using a single

monolithic javascript entry point.

While both of the tools discussed above are squarely in the same category as our

intent for Processable (Dynamic Data Visualization), neither of them satisfied the

main goal of providing a strong intuition for the organization of a program in memory,

nor did any of the other less popular or relevant visualizers that were investigated but

didn’t warrent discussion. However, we were accelerated in the re-implementation of

the concepts from scrath by basing our tool on the general structure of those presented

above, with the freedom to shape the code and visuals in such a way as to meet the

needs outlined in the previous chapter.

18

Chapter 3

Functionality

3.1 Use Cases

The piece of software described in this project is primarily motivated by a single

problem: learning assembly language is difficult. Thus all of the potential uses we

imagine for it are united under the idea of helping students in the process of learning

(their first) assembly language. Beneath this umbrella, we can imagine a number of

different specific use cases in support of the goal of computer science education:

• A student wishes to visualize the execution of a sample assembly

program.

It remains the case that one of the best ways to become acquainted with a

new programming language or paradigm is to inspect simple example programs

and trace their execution. This can be done without a visual environment, but

visuals help to build intuition, and can expedite the absorbtion of new concepts,

as has been found by the creators of Python Tutor[22]. Processable ships with

four examples assembly programs of different complexity, and together provide

a gentle introduction to assembly language concepts.

19

• An instructor wishes to present a program trace to a class.

Related to the previous case, instructors often wish to present a similar type

of walkthrough as part of their instruction. As an alternative to painstakingly

composing a visual for each step of a program by hand, or drawing the trace in

front of students on a blackboard, Processable can be used to present a clean

and reproducible instructional trace that can be projected onto a screen during

a class.

• A student wishes to debug an assembly program.

As the title of this paper suggests, a more specific use case than simply tracing

a program to gain intuition is attempting to diagnose a bug in a student’s pro-

gram. Here Processable presents an alternative to terse and complex command-

line debuggers such as gdb with an intuitive, button-oriented interface for ma-

nipulating the inferior process. Further, inspecting program state to determine

the source of a bug becomes a matter of simply scanning the UI panel for the

relevant area of memory.

• A student wishes to visualize a C program at the assembly level.

Finally, an ambitious student could apply one of the same processes described

above for a C program of their choice, after compiling it to assembly. The

general-purpose nature of the emulator on which Processable is built, and the

support for integration with the C standard library allow for most of the pro-

gramming constructs used by student programs to be emulated accurately, and

the environment is equipped to deal witht the particulars of compiler-generated

code.

20

Figure 3.1: A series of screenshots of the Processable interface illustrating the process
of loading and running a program.
More screenshots of the application can be found in Appendix A

(a) Statically loaded program

(b) Program in execution

3.2 Features

In addressing the assembly language concepts defined in Chapter 1, the final product

provides rich functionality for allowing students to engage directly with these ideas.

21

The flow of a typical user interaction proceeds as follows (see screenshots in Fig-

ure 3.1): first, the user is presented with a welcome screen offering them the option

to upload an assembly file or load one of the provided examples (Figure A.4). After

selecting a file, the application loads the program, and populates the panels dedicated

to viewing the static sections of memory (i.e., the text, rodata, data, and bss sec-

tions), (Figure 3.1(a)). Finally, after beginning the process with the run command

in the console, the stack is set up with the command-line arguments, and debugging

can begin (Figure 3.1(b)). From there, the user can control the inferior process with

Processable’s button-oriented interface, toggling breakpoints by clicking on addresses

in the text section, and stepping or continuing the process with the respective buttons

in the toolbar.

3.2.1 Toggleable Decodings

To help convey the concept of type-agnostic data, all of the memory areas provide

some method for toggling between decoding options for a particular group of bytes,

in addition to a “raw” view of each underlying hex byte wherever possible. The

supported decoding formats are hexadecimal, binary, ASCII characters, and signed

and unsigned decimal integers. Clicking a decoding group next to any set of bytes

in memory will cycle through the available options. These options for the stack are

shown in Figure 3.2(a), and for other memory areas in Figures A.1-A.3

On the stack in particular, the size of the decoding groups can be set globally (as

1,2,4, or 8 bytes) or customized to display variables of different sizes on the stack at

the same time, as shown in Figure 3.2(b). Additionally, the stack is annotated with

the current values of stack and base pointers (%rsp and %rbp), with labeled arrows

pointing to the addresses which they contain.

Additionally, the most recent version of the tool includes support for the heap

and dynamic memory allocation. The screen space required to show the heap is quite

22

(a) (b)

Figure 3.2: Screenshots of the decoding options available for the stack on (a) the
same 4-byte region and (b) a larger region with multiple decodings of different sizes

large, and so by default it is hidden. The bottom left of the screen contains a tab for

toggling display of the heap, and when it is on, the normal display is condensed to

take up half of the screen, and the Heap takes up the rest. The heap supports the

same decoding options as the stack, and is shown in the Appendix A in Figure A.5

3.2.2 gdb Commands

As a way of bridging the gap between Processable and traditional command-line

debuggers, we also have support for a small subset of common gdb commands. These

commands are entirely redundant to the functionality provided by the debugger’s UI,

with the exception of the run command which must be used to start a process and

23

provide it with command-line arguments. Those that are implemented include break,

for toggling breakpoints, step for advancing to the next instruction, continue, for

resuming execution (until the next breakpoint) and help for displaying command

options.

3.3 Limitations

3.3.1 x86 Instructions

We implmented a minimal but quite usable subset of x86-64, including most control

flow and integer arithmetic instructions. Important limitations to note include

• There are no floating point instructions or registers

• No support for the x86 AF (auxiliary / half-carry) and PF (parity) flags

• 64-bit multiplication is not supported (mulq, imulq)

• No direct support for assembly-level I/O (in, out)

Despite these limitations, Processable supports approximately 97% of the instructions

found in production code by frequency of occurence. The full list of supported in-

structions along with their frequency in production code can be found in Figure 5.1,

with accompanying discussion in Section 5.2.1

3.3.2 C Standard Library

A subset of the C standard library has been implemented with javascript functions

that produce similar behavior on the emulation environment as their corresponding

functions on a linux C runtime. Additionally, variadic functions in the standard

library cannot be called with more than six arguments. The list of currently supported

functions is presented in Figure 3.3.

24

Figure 3.3: C standard library functions supported by Processable

printf1 scanf1 getchar putchar

brk sbrk malloc2 free3

atoi abs labs exit

1 Supported format specifiers: %d, %i, %x, %s

2 Minimal implementation, simply wraps sbrk

3 Free does nothing (a valid, albeit very wasteful, implementation)

3.3.3 Addresses and Machine code

As this application interprets assembly language directly from its string representa-

tion, there is no assembling to machine code, and so addresses in the text section

are not accurate. As a convention, all instructions are assumed to be 2 bytes, and

the addressing of the text reflects this. As a corollary, machine code injected into

memory via a buffer overflow will not be executable.

3.3.4 Runtime

Programs are loaded by something analagous to an exec() call by the debugger. This

pushes the command-line arguments onto the stack, as well as the argv array and

finally the pointer to argv, and argc. Note that there are no environment variables

pushed onto the stack, and no corresponding envp array. Additionally, when an

assembly file is loaded, the “assembler” injects a minimal C runtime (commonly

referred to as crt0.s) which does 4 things: First it copies argc and argv from the

stack into %edi and %rsi respectively, then it ands the last byte of the stack pointer

(%spl) with 0xF0, to force a 16-byte alignment, and calls main(). When main returns,

it moves the return value %rax into %rdi and calls exit(). Notable omissions include

a call to libc start main, or other initialization code.

25

Chapter 4

Implementation

In considering the goals of this software, there were two in particular that led to

the implementation described here. First, given the ever-evolving nature of software

engineering, and the similar instability of course content, we would like the software

to be easily maintained and expanded. Midway through the development process,

a movement began within the Princeton CS department to transition the COS217

course from using x86-64 as the architecture of choice to ARM64. While this could

have been an existential threat to the usability of this project beyond an academic

exercise, we took this as an opportunity to design the application to be as modular

and architecture-agnostic as possible. That is, each module should be designed to

work with any architecture, with the exception of those features which are unique

to it. This led to a more general guiding philosophy that all modules should be

replaceable if possible.

The second goal which we hope is satisfied by this implementation is to learn

about and explore the properties of real systems. That is, in emulating hardware and

low-level kernel and systems software, we would like to draw on the concepts that

have allowed them to succeed in providing specific functionalities to the end user. As

the process of emulating a particular software involves many of the same challenges

26

Figure 4.1: A high-level overview of the packages that comprise Processable

The FixedInt package provides an Arith-
metic and Logic Unit (ALU) for hardware
emulation. The emulator builds on top of
that for a full process environment, and the
debugger provides an interface to a running
process. The FixedInt data type pervades
the entire application and allows for the pass-
ing of fixed-width data between modules.

as writing the original software, maintaining analogies as faithfully as possible is a

helpful tool. Further, the structure of this project itself may serve more advanced

students as a way of exploring the intricate relationships between computer systems

from the comfort of an expressive high-level language, as it has done for me during

the course of development.

In accordance with the goals above, the project is divided into three distinct soft-

ware packages, with cascading dependencies between the three of them. That is, each

higher level package only imports from the package(s) below it. The first is a library

(which we name FixedInt) for working with fixed-width, two’s complement integer

values, and manipulating them in the style of an Arithmetic Logic Unit (ALU). This

forms our “hardware” layer of abstraction, and implements arithmetic and logical op-

erations independently of any particular architecture. The middle layer is the most

technologically challenging, and represents a retargetable, debugging-aware process

emulator. Finally, on top of these is a GUI application that serves as a visual de-

bugger, taking advantage of public methods exposed by the emulator to control the

process being executed.

Drawing inspiration from the Emscripten virtual machine, the fundamental

javascript data structure that makes accurate emulation possible is the ArrayBuffer.

27

The ArrayBuffer is just a thin wrapper around the host platform’s native malloc,

and simply returns to the user a pointer to a chunk of memory of the requested

number of bytes[17]. There are several wrapper objects for reading values of different

types from an ArrayBuffer including: Uint8Array, Uint16Array, Uint32Array,

Int8Array, Int16Array, Int32Array, and DataView.1 All but the latter behave

as normal arrays, interpreting the underlying data as the type in the name. The

DataView is a wrapper that allows one to read beginning at any byte in the buffer,

and interpret the following bytes according to the desired type, using methods such

as DataView.readUint32(offset, litteEndian). We make extensive use of the

ArrayBuffer and its associated views throughout the project, and also note that it is

part of the javascript subset known as asm.js, a project maintained by Mozilla as a

set of ahead-of-time compilable and highly optimizable javascript[24].

We will describe the implementation of each module starting from the lowest level,

the FixedInt library, followed by the emulator, and finally the visual debugger. For

context regarding the size of each part of the codebase, the FixedInt module contains

1430 lines of javascript, including tests; the emulator contains around 3300 lines of

javascript, including tests; and the Debugger application contains around 2000 lines

of javascript and JSX templates, and 1000 worth of CSS stylesheets. Bundled and

minified, the entire application is served with approximately 370KB of javascript, and

20KB of CSS.

4.1 The FixedInt Library

At the assembly level, types do not exist as they do in higher level languages. While

there is some hardware distinction between floating point and integral types, con-

ceptually different types like signed and unsigned integers, memory addresses, and

1There are also the wrapper classes Float32Array and Float64Array, but we make no use of
floating point data and will not discuss them.

28

character arrays all look the same in memory: lists of bytes. It’s then up to the

program to decide how to interpret these values, imposing the concept of type on

them when we ask certain questions. Important questions for control flow, like “is

this number greater than that number” don’t make sense in the world of bytes until

we decide what the bytes mean. In the level of C, the decision making is abstracted

away, and we can imagine that every piece of data we manipulate exists with only one

interpretation – unless we explicitly change what that interpretation is with a cast.

The closest thing to type on the machine level is size: we manipulate values of

specific, fixed widths in bytes. In most cases, instructions in the x86 architecture

require the size of the operands to be specified, as slightly different hardware may be

used for manipulating values of different length.

Somewhat ironically, Javascript lacks explicit types in a totally different way.

Rather than pedantically checking every operation to make sure you haven’t used

your data in a way other than you promised you would, javascript lets you reassign

variables as you please, allows direct comparison between objects of different types,

and doesn’t distinguish between floating point and integer values. This last part is

especially tricky – javascript uses a single 64-bit IEEE double precision floating point

type to hold all numbers[18], even those returned by a call to parseInt()!

The ArrayBuffer can support fixed width values, but ArrayBuffers get clunky

for passing data around, and there is no easy way to do arithmetic on ArrayBuffers

as they exist. So we need some intermediate form into which we will read from

ArrayBuffers for doing any arithmetic and data movement. 1,2, and 4-byte values

all fit inside the javascript Number type with full precision, but for values greater than

253, the underlying double precision type can no longer represent every integer. While

we still technically have 64-bits, we don’t have 64-bit integers.

While tempting, we can’t just throw away precision for values between 253 and

264 − 1, even though the most common use for 64-bit values in x86-64 is addressing,

29

and the largest virtual address spaces used in practice these days are only 48-bit[],

we want our system to actually work, not only work as long as you don’t try to

add really big 64-bit values. So, we need a new data type. The first workaround

that came to mind was a special 64-bit integer class, simply containing two regular-

old javascript numbers. There are no precision problems if we keep lo and hi below

232, and because of Javascript’s lax type system, we can pass Int64 instances to a

function the same as any other Number. If precision matters for some operation, we

just handle the (x instanceof Int64) case separately, and otherwise can simply

extend the DataView prototype to support reading and writing 64-bit integers.

But large integers are not the only problem in hardware emulation; we would like

the result of adding two fixed width integers of the same size to be a valid fixed width

integer of the same size. So what happens when we add 0xFF + 0x01? If these are

1-byte values, the sum should be 0x00, and we would indicate that an overflow has

occurred, which is not the case for the addition of two javascript Numbers. Similarly,

our representation should not care whether the values are interpreted as signed or

not; one of the beauties of twos-complement arithmetic is that sums and differences

are the same regardless of whether we interpret each operand as signed or unsigned.

4.1.1 The FixedInt data type

The answer to our problem is to wrap all values in a single fixed-width integer type,

with different sizes corresponding to the four common data sizes on 64-bit architec-

tures: 1, 2, 4, and 8-bytes. Internally, this is represented by two IEEE double-precision

floating points (javascript Numbers), which we call hi and lo, each of which is limited

to 32-bit integer values. FixedInts of 1,2, or 4-bytes have hi set to zero, and the

value stored in lo. The 8-byte FixedInt uses hi to store the high-order 4-bytes of

its value, and lo for the low-order 4-bytes.

30

Figure 4.2: API for the FixedInt data type
FixedInt(Number size, Number lo, Number hi)

FixedInt(Number size, DataView buf, Number offset, bool le)

FixedInt(Object other)

bool isNegative(void)

bool isOdd(void)

bool isSafeInteger(void)

bool isLessThan(FixedInt that)

bool equals(FixedInt that)

FixedInt clone(void)

FixedInt toSize(Number size)

ArrayBuffer toBuffer(DataView buf, Number offset [, bool le])

Number valueOf(void)

String toString(Number radix, bool signed)

While this allows us to represent values up to 64-bits, it doesn’t guarantee that the

representation is unique. In a two’s-complement integer scheme, the 1-byte signed

value -1 has the same representation as the 1-byte unsigned value 255. Javascript

Numbers on the other hand have two distinct values for -1 and 255, and still more

representations with different values in the irrelevant upper bytes.

To solve this, we propose an invariant: internally all hi and lo values will be

nonnegative, and for 1 and 2-byte FixedInts, lo will be in the range [0, 28 − 1],

or [0, 216 − 1], respectively. We should still be able to construct a FixedInt from

a negative number, but it should not stay negative. So how do we convert -1 to

255? Bitwise operations |, &, ∧, >>, <<, >>> are defined on the Number class,

but are only valid if the value of that number is a 32-bit integer. More precisely,

each operand to a bitwise operation is first converted internally to 32-bit integer, and

the result is cast back to a Number.[18] Further, the results of bitwise operations are

interpreted as signed when casting to Number, with the exception of the logical right

shift >>>, which always returns a positive Number. Also notable, all shift operations

are taken mod 32. To illustrate these quirks, we can enter a couple of basic bitwise

31

operations into the nodejs REPL:

(node) 2 << 33

4

(node) 4294967295 >> 0

-1

(node) -1 >>> 0

4294967295

In practice, this just means that we must be aware of these edge cases, and be

careful when casting: first limit the input to the desired bit length, and then right

shift by zero to force the result to be positive. By keeping a set of bitmasks indexed

by byte length we can easily convert automatically in the constructor, and making

the class immutable gives us a guarantee that our invariant will not be violated. This

looks something like

const MASK = {1: 0xFF , 2: 0xFFFF , 4: 0xFFFFFFFF };

class FixedInt {

constructor(size , lo, hi) {

// ...

if (size === 8) {

this.hi = (hi || lo / (MASK [4] + 1)) >>> 0;

this.lo = (lo & MASK [4]) >>> 0;

} else {

this.lo = (lo & MASK[size]) >>> 0;

}

}

}

This one fiddling of bits takes care of a lot of our issues for us. Then, when we

actually do arithmetic on two FixedInts, we just do arithmetic on the constituent

Numbers: hi and lo, and when we construct a new FixedInt to hold the result, our

constraints will be enforced. For 8, 16, and 32-bit FixedInts, we can just do Number

arithmetic and cast the result. In the above example, 0xFF + 0x01 = 0x100 and

(0x100 & 0xFF) >>> 0 = 0 as required.

32

Figure 4.3: API for the FixedInt ALU
static FixedInt add(FixedInt a, FixedInt b)

static FixedInt sub(FixedInt a, FixedInt b)

static FixedInt mul(FixedInt a, FixedInt b)

static FixedInt div(FixedInt a, FixedInt b)

static FixedInt sar(FixedInt a, FixedInt b)

static FixedInt shr(FixedInt a, FixedInt b)

static FixedInt shl(FixedInt a, FixedInt b)

static FixedInt and(FixedInt a, FixedInt b)

static FixedInt xor(FixedInt a, FixedInt b)

static FixedInt or(FixedInt a, FixedInt b)

static FixedInt not(FixedInt a)

static FixedInt neg(FixedInt a)

4.1.2 The FixedInt ALU

The other part of the FixedInt package is an implementation of an Arithmetic Logic

Unit (ALU), which handles real operations on FixedInts. The ALU class is distinct

from FixedInt and exposes only static methods that all return new FixedInts. Two

other designs were also considered: the first made arithmetic and logical operations

instance methods of FixedInt, and operations took the form a.add(b). This had the

performance advantage of not having to construct a new object for each operation, but

would mutate the value. While faster, this introduced the possibility of unexpected

mutations after passing a FixedInt instance to a funciton, as well as confused the

concept of status flags (i.e., does it make sense to refer to the Carry Flag of a particular

FixedInt?). Another potential solution involved adding static ALU methods directly

onto the FixedInt prototype, and having each return a new FixedInt. While an

improvement, it would also make it more difficult to later change or augment the

behavior of the ALU, and in the spirit of supporting arbitrary architectures, one

could imagine a situation in which the FixedInt type was sufficient, but the ALU

would need to be updated. To allow for this possibility, the ALU was encapsulated as

its own class.

33

Given the immutability of the FixedInt type, and the guarantee that javascript

Numbers can be coerced to a unique two’s complement representation of the appro-

priate size, the implementations of individual arithmetic and logical operations were

mostly straightforward for 1,2, and 4-byte operations. The 8-byte case would always

require some special handling, but often logic could be shared for all sizes. The typical

ALU function is structured as follows:

function (a, b) {

const {a, b, size} = _validateInputs(a,b);

// common logic

// ...

if (size === 8) {

// special 8-byte logic

} else {

// special 1,2,4-byte logic

}

// common logic

// ...

const result = new FixedInt(size , x, y);

// set flags based on a, b, and result

// ...

return result;

}

To handle ALU flags like a real processor, we can just write to a couple of static

booleans from inside the arithmetic and logical functions. The carry flag is set if the

value being passed to the FixedInt constructor is larger than the max for that size.

The zero flag is trivial, and the sign flag is just a test of the highest valid bit for the

size. We can encapsulate the high bit test into an isNegative() method, and the

overflow flag can be computed by comparing the signs of the operands and the result.

With addition for example, the overflow flag should be set if the operands are the

same sign, and the result is different.

Additionally, to handle operations which may return a larger value than the in-

put, we also add a read-only property to the ALU class which we call aux, for storing

extra/auxiliary values relevant to the most recent computation. In the case of multi-

plication, this is the upper n bits of a 2n-bit product, the result of two n-bit numbers

34

being multiplied. For division, this is the modulus, which is incidentally computed

by the recursive division algorithm used, and required for emulation of x86.

4.2 The Emulator

Like the rest of the project, the Emulator is written in Javascript, but makes no use

of Web APIs such as the browser event loop or the window object and its descen-

dents. This allows the emulator to run outside of a web context (e.g. in a Node.js

or embedded V8 context2), and facilitates more rigorous and automated testing from

the command line, as well good logical separation of concerns. However, for the sake

of the application being described, being written in javascript allows the emulation to

occur in the browser and without any communication with a server. This alleviates

the vast majority of the security concerns associated with hosting a debugger on the

web. Rather than allow users to upload untrusted code and relying on complicated

sandboxing schemes to insulate the server, we deliver the full runtime environment

to the user and run their code on the emulator running on their own browser.

In terms of module design, dependencies try to model relationships between the

real pieces of hardware and software that are being emulated. For example, the CPU

chip or instruction set has access to registers and memory, but memory by itself has

no concept of registers, and does not know where the stack pointer is at a given point

in time. This also allows for the emulator to be readily extended, as any module can

be substituted for a different implementation without affecting the behavior of the

others. We will primarily describe the emulator in the context of x86-64, which is the

only reasonably fully implemented architecture. However it should be clear from this

discussion how support could be extended for other architectures, memory models,

or libraries, and we will address this further in Chapter 6.

2Node.js is a standalone implementation of Google’s V8 javascript engine. Additionally, V8 may
be embedded into other C++ applications that may require running javascript, and this emulator
can run in such an environment[33]

35

4.2.1 The Assembler

Though this project does not actually assemble any assembly language to machine

code, there are several tasks performed at assemble time that are still necessary

for accurate emulation. In particular, the assembler (e.g. gas[19]) must generate

a symbol table which maps from labels defined in the assembly file to addresses

in the final executable. It also must reserve space in the object file for any data

that is statically allocated in the .rodata, .data, or .bss sections of memory. In

real compilation pipelines, the addresses of objects in the final executable may not

be known at assemble time, as more assembly files may be combined with the one

currently being assembled before an executable is generated. Instead of real addresses

then, the Assembler will generate relocation records, which indicate an address that

must be computed at link time, and contain an offset relative to some address that can

be computed easily. At link time, the linker gathers all of the individual object files,

and resolves all of the relocation records to generate addresses in the final executable.

Our assembler takes a similar approach, first mapping labels to a set of pseudo

line-numbers on a first pass, and then making a second pass in which each instruction

is written to memory, and space is allocated in the returned Image object for each

variable declared at assemble-time. On this second pass, line numbers are converted

to addresses as the Image is generated, and a dictionary of labels mapping to addresses

is returned as well. Fortunately, emulating behavior on the assembly level saves one

of more cumbersome tasks of the linker, and labels and addresses don’t need to be

relocated within instructions. Because the runtime environment of the emulator will

retain access to the dictionary of labeled addresses, jumps, calls, and other uses of

labeled memory can be resolved dynamically at runtime.

36

Figure 4.4: A diagram of the Process object and its subordinates. The parser and
runtime modules each inject methods directly onto the process object, while the
memory, registers, lib, and chip modules are tacked on as extensions.

4.2.2 The Process Object

The Process object is the top-level data structure for the emulator. It is instantiated

with both the image of the program to be executed, as returned by the assembler, and

any additional context which determines the execution environment for the process,

including the processor chip, assembly parser, register definition, and standard library.

To some extent then, the Process object contains in its abstraction it’s own version

of everything that is necessary for a process to run, including CPU, memory space,

registers, libraries, and system resources. While traditionally processes are provided

as an abstraction to users so that programs may be written as if they have complete

access to the address space and registers, and complete control of the CPU, in this

emulator each process does have exclusive access to its own memory, registers, and

CPU chip. There is no implementation of address translation or CPU time-slicing, as

software versions of these resources can be instantiated multiple times, unlike their

hardware equivalents which require such tricks.

Each of the abstractions discussed in the following sections are subordinate to the

Process, and are bound to it in the javascript sense of sharing the same this. Most

37

of the work of emulating a process is done in one of its subordinate objects, and the

Process object itself serves mostly to administer the task with its execution loop.

The main execution loop consists of three steps:

1. The process consults the breakpoint dictionary to determine if execution should

proceed.

2. The process fetches the next instruction from memory. If the next instruction

is non-null, it passes the result to the parser to decode and execute.

3. The parser passes control to the appropriate mnemonic in the chipset, which

makes changes to the program state, using further helper functions provided by

the parser.

Given this main loop, the rest of the Process’ behavior is determined by the indi-

vidual modules described below, which can each be altered indepedently to support

any process that can be described by this “check breakpoint, load, execute” loop.

4.2.3 Parsing

While real machines operate on binary machine code, with each instruction and

operand given a unique encoding, assembly language often condenses multiple in-

structions or operand types into a single form of mnemonic. The (albeit limited)

expressiveness of assembly language can get in the way of a direct translation be-

tween instructions and the process’ resources such as memory and registers. While a

first approach could be that instruction parsing should be provided with the architec-

ture, this creates a tight coupling in a place where one doesn’t exist in real systems.

That is, in an x86-64 architecture, we should be able to switch out AT&T syntax for

Intel without rewriting every function on the entire chip. Since the actual machine

behavior is the same, this can be accomplished by a parser module that can translate

38

the idiosyncacies of a particular syntax into the proper reads, writes, and jumps in

the process.

Accordingly, the parser provides four public functions; execute(), which is called

by the Process object’s execution loop, and read(), write(), and jump(), which

abstract away the operand syntaxes of the assembly language flavor being parsed,

and are available within the chipset to bridge between emulated CPU behavior and

the string representation of instructions in assembly. In essence, execute() takes

two arguments: a string mnemonic, and an array of strings operands. It parses the

mnemonic, and determines the correct chipset function to call, passing along the

operands and any pertinent other information obtained from the mnemonic (e.g.,

operand sizes inferred from the suffix in AT&T syntax). Within the appropriate

chipset function, read(), write(), and jump() can be called on the individual

operands, according to the behavior of the particular instruction. This greatly sim-

plifies the implementation of the chipset functions, and each may leave it to the

parser to distinguish between immediate, register, or memory operands when reading

or writing. Similarly, jump() is charged with distinguishing between labels, indirect

jumps to an address in a register, or external calls to the standard library. Any new

parser can be substituted for the existing AT&T/x86-64 parser by supplying these

four methods.

4.2.4 Registers

Registers, the type of storage closest to the CPU in the memory hierarchy, come

in many shapes and sizes, and in many architectures multiple named registers may

overlap. In particular, hardware registers do not enforce Load-store consistency ;3

data written to one register may be read from a different, overlapping register. In

3Here “consistency” should not be confused with data consistency in the distributed computing
context. Here it is referring to the pattern of access, i.e. is one consistently accessing data in the
same way, or does the usage depend on the side effects of writing to a particular destination.

39

x64, all general purpose registers come in at least four sizes, and all but those added

in the architecture’s transition to 64-bits (%r8-r15) have two different 1-byte versions

that can be accessed. As this particular fact can be tricky for students to internalize,

and is typically not a feature of higher level languages, we wanted to ensure that

the emulator handled cases of load-store inconsistency correctly. An example of load-

store inconsistency would be writing a value to each of %ah and %al, and then reading

from %ax. On a real machine, the two-byte value %ax would have its lower-order byte

equal to the value written to %al, and it’s higher byte equal to the value written to

%ah.

Figure 4.5: Illustration of overlapping registers and encoding of the register descrip-
tion object.

To provide this guarantee, we need a byte-addressable structure from which we

can read and write values of 1, 2, 4, or 8 bytes at a time. As discussed above, the

ArrayBuffer is perfect for this case. However, to provide a clean bridge between

the parser and registers, we would like to be able to access each register by it’s

string name, as one would in the text of an assembly program. To achieve both, we

add a single layer of indirection provided by a register description object, which is

mapping from string names to tuples of index and length, indicating where in the

underlying ArrayBuffer a particular register’s value can be found. On little-endian

architectures such as x86, most overlapping registers begin at the same index, and

just vary in length, such as the %rax family shown in Figure 4.5. Each register group

is laid out sequentially in a single ArrayBuffer, but the Register object only exposes

methods read() and write(), to access values defined by the register description.

40

While we use the ArrayBuffer to provide byte-level accuracy for registers, we are

less concerned with bit-level accuracy, as it pertains to status registers such as EFLAGS

in x86. Though the different status flags are usually implemented as different bits of

a single register, they are conceptually independent quantities, and instructions even

reference them as such.4 Drawing on this conceptual interpretation, we implement

flags as an additional mapping from flag names to booleans, where the list of flag

names is also defined in the register description object.

4.2.5 Memory

Unlike registers, the abstraction of a process’ memory space is not dependent on CPU

architecture. While precise methods of accessing memory may vary chip to chip, and

address translation methods may vary from OS to OS, the concept of portable code

requires that the simplest form of the address space abstraction must be platform-

independent. Specifically, we want to be able to write to and read from any byte in

our space, from 0 to 264 − 1 on a 64-bit machine, knowing that some operations may

trigger a fault if we do not have permission to read or write from that address. The

permission concept gets implemented in the form of virutal memory areas (VMAs),

where each area spans some subset of the address space, and has a particular set

of permissions among read, write, and execute. On real systems, permissions are

managed on the page level by the Memory Management Unit (MMU), which will

trigger a page fault or general protection fault if a page is accessed in a way that

violates its specified permissions (and do nothing if not). The page fault handler will

then consult the VMA structure to obtain more information and determine whether

it can recover, or whether it should crash the program.

4Beyond the many jump instructions which test some logical combination of the status flags, x86
also includes instructions such as stc, clc and cmc, which set, clear, or complement the carry flag
respectively[26]

41

Figure 4.6: Cartoon depicting the organization of the Memory object and its subordi-
nates

We implement this in a similar but simpler way. Without an MMU or mem-

ory paging, we use VMAs as the fundamental unit of memory, and use a wrapper

Memory object to check permissions and delegate reads and writes to the different

memory areas, as shown in Figure 4.6. We implement two distinct types of VMA:

one for data (MemoryArea), and one for code (TextArea). The MemoryArea class

wraps an ArrayBuffer, and (just like our register implementation) exposes read()

and write() methods, which each take addresses. Internally, the MemoryArea main-

tains its high and low addresses, and translates each access to an index into the

ArrayBuffer. Some areas, such as the Stack and Heap, may grow dynamically dur-

ing a process’ execution, and so the MemoryArea class also has a resize() method

which can be called when a VMA is accessed outside of its current bounds. The

resize behavior is specified on the instantiation of the MemoryArea, as a function for

determining whether a particular address is valid for the area to resize5. Like regis-

ters, the read/write API provides a convenient way for moving FixedInts around

5For the stack, this is specified as the size of the “red zone”[10] beneath the current stack pointer,
which a process can safely reference. The heap is only resized manually by the containing Memory

object after calls to brk() or sbrk()

42

the emulator; the write() function takes a FixedInt value to be written to memory,

and read() returns a FixedInt.

The TextArea class handles the text section, and exposes only a read() method.

However, as our emulator operates on code in its assembly form (i.e., strings), the

return value of TextArea.read() is a regular javascript Array of strings representing

mnemonics and operands. The effect of this is that the Memory object’s read() may

return an Array or FixedInt, depending on whether the address argument refers

to the text section or elsewhere in memory, respectively. As mentioned earlier, this

also implies that code cannot be injected into memory and executed, nor can the

text section be introspected by a process, as the code and data in the emulator have

fundamentally incompatible representations.

4.2.6 Instruction Set(s)

The instruction set is one of the more straightforward modules in the emulator, and

defines the javascript implementations of each assembly mnemonic. More precisely,

the chip is simply a javascript object (conceptuatlly a hashtable) which maps from

mnemonic families to functions. Mnemonic families in this case describes a group

of mnemonics that perform the same funciton for different sizes of data (e.g., movq,

movl, movw, and movb are all in the mov family). For the implementation of the

x86-64 chipset, each mnemonic accepts an array of string operands, and an integer

size in bytes (1, 2, 4, or 8). Very little computation is actually implemented in the

mnemonic functions, and they serve primarily as a way of delegating arithmetic to the

FixedInt ALU, and mnemonic parsing to the parser’s read(), write(), and jump()

functions, and updating the status flags when appropriate.

An ARMv8 chipset was also begun as a proof of concept for multiple-architecture

support, and for the most part is just a new translation between operand positions,

43

ALU functions, and some specific register names, while reading, writing and jumping

are tasks of the complementary ARMv8 parser.

4.2.7 C Library Calls

While our primary aim for the tool was to allow students to debug assembly language

programs, it is unlikely that anyone learning assembly for the first time would not be

learning it in the context of a larger runtime environment. To that end we would like

to provide some of the comforts of the C runtime environment within our emulator,

to allow for a greater range of assembly programs to be debugged on the platform.

There are many ways in which libraries can be linked against a compiled binary,

and all of them are difficult. Usually libraries are included at link time (for static

libraries) or load time (for shared object libraries), when the final executable binary

is produced. In the case of dynamically linked libaries, procedure calls involve a

layer of indirection, in which the first call to a particular function instead calls a

dynamic loader in the Procedure Linkage Table, which writes the actual address of

the function into the Global Descriptor Table[11]. Implementing this in our emulator

would be prohibitively complicated, and extraneous information for most students.

Not to mention it would require that we distribute a disassembly of a C standard

library with the app, and would require us to support some obscure instructions that

could turn up there. Static linking is only slightly better, as we would then require

students to compile their own binaries, and disassemble them in the application. Both

approaches suffer from the fact that many library functions make a system call at

some point, which would require us to jump out of the emulator and provide some

functionality in javascript. Instead of adding this complexity, we instead decided to

implement a subset of the standard library in javascript, using a foreign function

44

interface (FFI) that conforms to the System V ABI (Application Binary Interface)

for x86-646 (or whichever architecture is currently being emulated).

The FFI itself consisted of only two functions, provided by the architecture mod-

ule: abi.arg() mapping an integer index to the FixedInt value of the argument read

from the appropriate register, and abi.ret() which writes its argument to %rax, pops

the address from the top of the stack, and jumps to it. The library functions each

begin with calls to abi.arg() to retrieve the proper arguments, and the body of the

function can perform any necessary computations in javascript with full access to

manipulate the process object, before calling abi.ret(). Each of the library func-

tions are invoked without any (javascript) argument, and it is the job of the parser

when making a jump to identify when a particular label is a part of the attached

library, and call the appropriate function. In another nod to the extensibility of this

design, the same library implementation can be used with multiple architectures, so

long as each provides its own implmentation of the function call ABI for the target

architecture.

4.3 Front-end and Debugger

The user interface for the visual debugger application is quite straightforward given

the emulator on top of which it is built. This is accomplished by using the javascript

framework React[15]: a declarative, component-based library for making responsive

user interfaces. In particular, the declaritive syntax allows us to define the applica-

tion’s entire view state in terms of arbitrary data. For Processable, the data that

defines our view is the process object defined in the emulator layer. Much of the

relevant data is deeply nested, and so we try to similarly nest the components which

6Specifically, this is the convention that the first six argument are passed in registers
%rdi,%rsi,%rdx,%rcx,%r8d, and %r9d, respectively, and the return value is passed in %rax

45

display it, threading only the relevant members of the process object through to their

corresponding presentational elements.

Fundamentally we would like to display two different types of data: string as-

sembly instructions, and type-agnostic, variable-length byte fields. The former is

accomplished simply by mapping each instruction to an HTML element containing

the instruction’s text and address. The address is formatted as a button, with a

click handler bound to the breakpoint toggle method of the currently executing Pro-

cess object. In addition, the text section displays the current value of the Program

Counter (PC), and conditionally formats the instructions to clearly indicate the next

one to be executed.

For non-text data, we build a display hierarchy up from the FixedInt data type.

At the bottom of the hierarchy for each virtual memory area we have an <Item/>

component, which holds the items value as its main property. For the purporses of

display, the FixedInt module is augmented with a set of decode functions, which

define an enumeration type for the five decoding options we provide.7 The <Item/>

maintains via the state instance variable its current decoding, and uses that to call

the appropriate decoding function in its render() method. The <Item/> registers a

click handler which cycles the decoding through the available options, changing its

color and decoding label along the way. For all memory areas (i.e., excluding only

the register section), the <Item/> also renders each byte of its underlying FixedInt

to provide the raw data which does not change with each decoding.

On top of this, each VMA in the display must map from its corresponding

MemoryArea in the emulator, to a list of <Item/>s to be rendered. For the static

sections and Heap, we rely on a simple mapping which divides the entirety of the

VMA in question into equal-sized chunks: the largest of 1, 2, 4, or 8 which evenly

divides the area in question. For static sections, this process is repeated between

7Again, these are unsigned hexadecimal (hex), unsigned decimal integer (uint), signed decimal
integer (int), binary (bin), and ASCII character (char).

46

each label, and for the heap, this simply defaults to 8-bytes accross the entire section.

The Stack is much more flexible, as it tends to have the largest variety of data stored

within each function call frame, and so we allow the user to customize the way in

which it is decomposed into individual <Item/>s. This is done by providing both a

global chunk size, which a user may toggle between 1, 2, 4, or 8-bytes, as well as

a separate custom mode in which the stack can be divided into chunks of unequal

size. This is accomplished by maintaining an array of addresses in the top level stack

component which we call breaks. When rendered, the stack iterates over each break,

and constructs a FixedInt from the stack by reading the data between consecutive

breaks. We then allow the user to add or remove breaks from this list with a click

handler on the address adjacent to each stack byte. As FixedInts are limited to spe-

cific byte sizes, there is additional logic in the break toggle handler to add additional

breaks if necessary to keep each chunk a valid size, or reject the toggle altogether if

it is impossible at the given address.

47

Chapter 5

Evaluation and Conclusions

5.1 User Evaluation

To gauge the success of the application as a potential teaching tool, we conducted a

user evaluation in two phases. The first phase was an in-depth walkthrough with three

expert users, and consisted of a cognitive walkthrough using an early, stable version

of the software to trace an assembly-language program with which each of them

were quite familiar. Following this evaluation and a round of revisions based on their

feedback, the alpha version of the software was published and the link was distributed

via piazza to the students enrolled in COS217 at Princeton in Spring 2018. The alpha

version included a link to a feedback form which the students were encouraged to fill

out. We now present the results of each of these rounds of evalutation.

5.1.1 Evaluations by Instructors

To perform an expert evaluation, we needed participants who were not just well-

versed in assembly language and debugging, but in particular experts in the process

of learning assembly language. While this is a strange designation, it is exactly the

expertise of instructors who have been teaching introductory systems programming

48

for several years. The three instructors selected to evaluate the first version have each

been preceptors for COS217 for multiple offerings of the course, and had extensive

experience introducing assembly language to computer science students, and tracing

assembly language programs by hand.

To evaluate the application, each instructor was first introduced to the software by

loading a simple Hello World program, (hello.s, provided in Appendix B). Following

a brief tour of the user interface, the evaluators were instructed to return to the

landing page, and load a second program, euclid.s1, wich computes the greatest

common demoninator of two integers read from stdin. Each evaluator was then asked

a series of simple questions about values in registers or memory during the execution

of the program, (the full text of the evaluation script can be found in Appendix C).

All three evaluators exhibited a similar learning curve for the interface, which

was fairly steep in the sense that initial confusion gave way to comfort with the

interface after a few minutes of use. The feedback from the preliminary evalution

was uniformly positive, and all three were able to answer all questions without much

trouble. At the same time, most sticking points were shared between evaluators, and

the evaluation process resulted in the following takeaways:

Problem The direction of stack growth is a conceptual block

When asked to find a value on the stack, all three instructors intially stumbled while

navigating it, remarking out loud that they expected it to be growing upwards rather

than downwards. Discussing the issue with each of them, they admitted a bias that

stems from the way they draw the stack in class, which may not be shared by those

learning assembly for the first time. Further, the popular Computer Systems textbook

by Bryant and O’Halloran[11] (used in COS217) depicts the stack growing in the

opposite direction, to indicate that it grows towards lower addresses on x86. The

1This program is one of the examples used in the precepts for COS217, and all three instructors
were familiar with the program. It’s full text is also available in Appendix B

49

confusing disparity between the conceptual stack which “grows up” and the literal

stack on x86 which expands towards lower addresses was also noted as a common

stumbling block for students learning assembly, and so we concluded that regardless

of direction, there should be a visual cue indicating which direction is being shown.

Solution: The view code used for showing the stack was refactored in such a

way that the order of items could be reversed with a single toggle. To make the

direction still more clear, an invisible padding element was added after the stack top

to ensure that top was distinguishable from the origin. The current orientation of

the stack was displayed in a button to the right of the stack area’s title, containing

either an up or down arrow as appropriate (↑/↓). Clicking on the button would

toggle the stack direction as well as the direction of the arrow. At the request of the

instructors, growing up was set as the default behavior.

Problem: The presence of some funcitonality was unclear

Likely as a result of previous experience with gdb, the evaluators would often rely

on the console to perform tasks for which there was a convenient button provided

instead.

Solution: Clickable objects were given mouseover tooltips to explain their

function, which appear after hovering over an item for 500ms or longer. Further, an

”about” page was added with a description of the various functionality provided, so

that users may consult more information when stuck.

Problem: The values of flags were not clear

When asked about the values of flags in the status register, displayed as colored boxes

with a two-letter abbreviation for each flag, evaluators noted that users unfamiliar

with assembly language may need more information to disambiguate the flags and

their states.

50

Solution: Flag boxes were given mouseover tooltips giving the flag’s long name

(e.g. CF = “Carry flag”), and whether or not it was set.

5.1.2 Evaluations by Students

Following the incorporation of feedback from the instructor evaluation, the appli-

cation was published as an alpha release, and the link was distributed to students

currently enrolled in COS217 during the week in which the course began teaching

assembly language. The release coincided with the students’ first assignment in as-

sembly language, requiring them to write a word count program, and an optimized

addition function for a big integer data type. Unfortunately, a combination of factors

lead to a low usage rate for the alpha version, with a total of around 40 unique users

visiting the site between March and April. In particular, the assembly assignments

for COS217 included one very straightforward translation, (which we presume did not

require significant debugging effort,) and one more difficult assignment that used the

heap and required multiple files. As the alpha version supported neither visualization

of the heap nor multi-file uploads, it was less useful to students during this week than

we had hoped.

However, after soliciting additional reviews from former students of the class we

were able to achieve a second round of feedback which guides some of the future work

discussed below. The student reviewers were very enthusiastic about the software,

but having been presented with it without any introduction (as was given to the

expert reviewers), they uninanimously requested a tutorial animation of some sort.

Beyond that, no one offered significant proposals for additional features or reported

any other inconveniences or bugs.

51

5.2 Performance Evaluation

Figure 5.1: Instructions supported by Processable and their popularity.

Statistics for mnemonic popularity was determined by parsing the output of objdump
for binaries found in /usr/bin/ and /bin/ on MacOS Sierra 10.12.6. The same tests
were also run on Amazon Linux with comparable results.

instruction popularity
mov 38.30%
jcc1 8.99%
call 7.78%
lea 6.78%
cmp 5.39%

test 3.91%
push 3.8%
pop 3.73%
xor 3.60%
jmp 3.53%
add 2.85%

movsxx 2 1.41%
sub 1.08%
ret 1.04%
and 0.79%

movzxx 2 0.75%
inc 0.67%
nop 0.58%

or 0.46%
shl3 0.34%
dec 0.30%

movabsq 0.18
imul 0.15%
sar 0.10 %

idiv 0.04%
adc 0.04%
not 0.03%
neg 0.03%
stc 0.01%
cmc 0.01%

cltq < 0.01%
cqto < 0.01%
jcxz < 0.01%

jecxz < 0.01%
shr < 0.01%
hlt < 0.01%

unsupported4 2.71%

1 Each conditional jump is implemented separately, the full set consists
of jns, jne, jo, jno, ja, jae, jb, jbe, jg, jge, jl, jle, js, jz, jnz,

jc, jnc, jnb, jnbe, jna, jnae, jng, jnge, jnl, and jnle
2 These are the intel syntax mnemonics for casting moves. The mnemonics imple-
mented by Processable are in AT&T syntax, and are movx bw, movx bw, movx bq,

movx wl, movx wq, movx lq, with x replaced by z or s, for zero-extension and sign-
extension, respectively
3 This also includes sal
4 Among the most popular unsupported instructions are cmovcc (0.47%), movaps

(0.25%), rol (0.16%), xchg (0.04%)

52

5.2.1 Instruction Support

A good way to evaluate an emulator is to see just how well it actually emulates

the desired architecture. More precisely, we can ask the question, how many of the

architecture’s instructions are implemented? While it’s hard to precisely determine

how many instructions there are in the x86-64 architecture, one estimate says there

are 981 distinct mnemonics[25], ignoring operand sizes and types.2 The x86 module

in this projects only implements 69 different mnemonics (ignoring size), which at first

glance seems like pitiful coverage. However, we must take into consideration that

the vast majority of these mnemonics are fairly special-purpose, and most programs

don’t use them at all. So how can we better estimate the coverage? Expanding on an

approach used by Peter Kankowski to answer a similar question in 2006,[28] we can

analyze the results of disassembling different collections of programs with objdump,

and count the occurence of each instruction to determine its popularity, and arrive

at a measure of coverage weighted by popularity. Using this metric, and using the

Unix utilties found in /bin and /usr/bin as a sample, we conclude that Processable

can run 97.3% of the disassembled code found there. The breakdown by mnemonic,

and the full list of supported instructions can be found in Figure 5.1.

5.3 Future Work

5.3.1 Minor Improvements

There are a number of small issues and areas for improvement that have become

clear during the project’s evaluation that form the immediate next steps before a

public beta release. From the common advice of the several students who completed

the feedback form for the hosted alpha version, it seemed that the interface was

2This is the number of distinct Intel syntax mnemonics. The author also claims that there are
1,279 mnmonics in AT&T syntax, which distinguishes many instructions by their operand sizes.[25]

53

intuitive only after a short but steep learning curve. An immediate improvement to

the workflow then would be the inclusion of a short tutorial or walkthrough of the

available features, especially including how to start a process.

Another helpful feature that couldn’t be implemented because of time constraints

would be allowing multi-file uploads. Though the assembler module of the emulator

is written to accomodate multiple files, it does not correctly implement some of the

subtler behavior usually handled by the linker, such as the resolution of weak and

strong symbols[11]. As such, the file upload button on Processable accepts only a

single assembly file, limiting its ability to debug larger, multi-file programs.

5.3.2 Improving Architecture Support

Though the focus of this project has been the x86-64 architecture, a remarkable

feature of the codebase is its factorization which allows for the substitution of new

architectures. In particular, every software component of the emulator described in

Figure ?? can be substituted independently. Given that COS217, the main case study

for this project, may transition to ARMv8 from x86-64, and that ARM processors

dominate the smartphone and embedded computer markets, it makes sense to first

aim for ARM support. The necessary reorganization to support ARM has already

been performed, and the register description and function call ABI have been written,

as well as a skeletal implementation of an ARM instruction set.

Another way to improve architecture support–at the cost of code size–would be to

integrate an existing emulator like Unicorn.js with the Debugger part of Processable.

This would allow execution of arbitrary x86 instructions and accurate addressing in

the text section, but also would require the inclusion of a disassembler to display

assembly mnemonics. A candidate for this, also ported to javascript by Alexandro

Bach, would be Capstone.js[7], and would add another several MB to the applica-

tion bundle. Some of the Processable emulator code would likely persist, for example

54

the C standard libarary interface and I/O handling are intentionally simplified from

their native behavior to coexist with a browser, and to customize the operating sys-

tem level services that are provided to to each process. These modules could be

ported to a new interpreter just by writing a new foreign function interface like those

described in Chapter 4.2.7. Together with the original Processable interpreter, the

application could offer a fast-loading, “simplified” environment, suitable for most stu-

dents’ programs with the previously described limitations, as well as a slower-loading

“professional” environment, which would support multiple architectures and their full

range of instructions. Educational use cases could expand to include more advanced

systems and assembly-level concepts such as vectorized computations, multithread-

ing, and signal handling. Going even further, a full emulator could also benefit from

integration with the emscripten virtual file system, which offers a POSIX-like API[44].

5.3.3 Compilation from C

With unlimited time, this project could expand in a number of areas to continue to

support students learning assembly language. In particular, offering the option to

compile C code directly in the application would greatly expand the number of use

cases we could serve, as well as make it easiser for students to use the tool with larger

programs. While this could be done by a webserver or even serverless via function-as-

a-service providers like AWS, it would be more in line with the spirit of this project

to run the compiler in javascript. Using emscripten, one could compile a C compiler,

and allow uploaded C files to be compiled to assembly or object code in the browser,

after which they could be executed in the browser on top of the Processable emulator

and debugged in the browser from the Processable debugger.

To take the compilation one step further, previous work by Matt Godbolt (Com-

piler Explorer [20]) and myself (Assemblance[42]) has focused on annotating the com-

pilation process between higher level languages and assembly. Assemblance in par-

55

ticular contains a python module capable of parsing DWARF debugging information

generated by gcc or clang, and returning JSON describing the mapping between

local variables (in the high level source) and their stack offsets or register locations

(in assembly), as well as the mapping from lines of source code to lines of assembly.

Combined with these tools, Processable could graduate to a full-fledged debugger, al-

lowing symbolic debugging of a C program with accurate emulation on the assembly

level. Further, tools such as transcrypt[2] allow for transpilation between python

and javascript, so we could still keep the entire debugger in the browser without

connecting to a remote webserver.

5.4 Project Evaluation

Looking back to the project goals defined in Section 1.1, would like to offer some com-

mentary regarding how well Processable has achieved these goals, both as a teaching

tool for assembly language, and as an effective program visualizer. Regarding the

assembly language concepts, the distinction between virtual memory areas is made

explicitly clear by the different panels of the interface. Further, the difference between

the visualizations provided for static sections and the dynamic heap and stack areas

emphasizes their distinct qualities, the former being allocated before the process be-

gins, and the latter two changing in size throughout the program’s execution. The

type-agnostic property of data in all memory areas is emphasized by the toggleable

decodings options enjoyed by each section. Further, the annotation of the stack with

the stack pointer (%rsp) and base pointer (%rbp) registers help to emphasize the

bounds of each stack frame, and help to elucidate function call mechanics at the

assembly level. Flat control structures remain a difficult concept to convey clearly,

but with clear visual elements for each of the status flags, we note that loops and

56

branches can be explored by setting breakpoints on conditional jump instructions and

inspecting the flag area before continuing.

As for the program visualization goals, the customizable decoding feature con-

nects to the desirable properties of multiple viewing options, and response to user

interaction, as while the underlying data does not change while the process is paused,

the user may completely alter its interpretation and presentation. The discussion

of Section 5.2.1 indicates that even the limited instruction set implemented by Pro-

cessable allows for very flexible input, with the potential for extension to multiple

architectures only increasing this flexibility. Finally, by combining all of this func-

tionality into a single, manageably-sized bundle of javascript and css, we believe that

we have achieved the widest audience possible given currently available technology, as

a purely client-side webapp can be run from any device with a (reasonably modern)

web browser and internet connection.

5.5 Conclusion

Though the world of tools dedicated to Computer Science Education is rich and

densely populated, there remain many niche content areas that are not well covered,

and the barriers to creating an effective visual application are quite high. As the

experience of building this application has taught me, to effectively teach even a

simplified model of a complex system, one must first thoroughly understand the real

system in order to identify which concepts may be simplified. Though I expected this

to be the case, it was still surprising to me just how many times the solution to a

tough problem in system emulation lay somewhere else within the original system!

Suffice it to say that while using single program visualization tool may help the user

understand the system in question, building a program visualization tool has (for me

at least) resulted in the study of far more computer systems than I ever imagined

57

would be necessary. As we have set up this project with the goal of teaching systems

level concepts for many years into the future, we hope at least a few students who

use it will take the opportunity to dive deeper into the world of computer systems,

and perhaps extend the software to continue to handle more use cases and broaden

understanding of one of the more nuanced and frustrating areas of computer science.

58

Appendix A

Supplemental Figures

Figure A.1: Screenshots of decoding options available for static sections.

Figure A.2: Screenshots of decoding options available for the heap

59

Figure A.3: Screenshots of decoding options available for registers

Figure A.4: Screenshot of the Processable welcome screen, with options to upload a
file or select an example.

60

Figure A.5: Screenshot of the Processable interface during program execution, with
the heap view toggled on

Figure A.6: A screenshot of the processable prototype, developed in July 2017

The prototype was developed as a single-file AngularJS application, using a mock
register set, used only a single (4-byte integer) data type. It supported the push,
pop, mov, jmp, and add instructions, and is still currently hosted at https://rmw2.

github.io/processable/prototype/

61

https://rmw2.github.io/processable/prototype/
https://rmw2.github.io/processable/prototype/

Appendix B

Sample Assembly Programs

The following are the sample programs that are provided as examples with the ap-
plication. These are four programs of increasing complexity, designed to showcase a
few of the features of the debugger, and provide a gentle introduction to assembly
language concepts.

62

Listing B.1: hello.s by Bob Dondero
1

2 .section ".rodata"

3

4 pcGreeting:
5 .asciz "Hello World\n"

6

7 .section ".text"

8 .globl main
9

10 main:
11 pushq %rbp
12 movq %rsp, %rbp
13

14 movabsq $pcGreeting, %rdi
15 call printf
16 movabsq $4, %rax
17 addq %rax, %rsp
18

19 movl $0, %eax
20 movq %rbp, %rsp
21 popq %rbp
22 ret

Listing B.2: uppercase.s by Bob Dondero
1

2 .equ LOWER TO UPPER, −32
3 .section ".bss"

4 cChar:
5 .skip 1
6

7 .section ".text"

8 .globl main
9 .type main,@function

10

11 main:
12 call getchar
13 movb %al, cChar
14

15 addb $LOWER TO UPPER, cChar
16

17 movsbl cChar, %edi
18 call putchar
19

20 movl $’\n’, %edi
21 call putchar
22

23 movl $0, %eax
24 ret

Listing B.3: euclid.s compiled with Apple
LLVM version 8.1 from euclid.c by Bob
Dondero
1

2 .text
3 .globl main
4 .type main,@function
5 main:
6

7 pushq %rbp
8 .Ltmp0:
9 .Ltmp1:

10 movq %rsp, %rbp
11 .Ltmp2:
12 subq $64, %rsp
13 movabsq $.L.str, %rdi
14 movl $0, −4(%rbp)
15 movb $0, %al
16 callq printf
17 movabsq $.L.str.1, %rdi
18 leaq −16(%rbp), %rsi
19 movl %eax, −36(%rbp)
20 movb $0, %al
21 callq scanf
22 movabsq $.L.str, %rdi
23 movl %eax, −40(%rbp)
24 movb $0, %al
25 callq printf
26 movabsq $.L.str.1, %rdi
27 leaq −24(%rbp), %rsi
28 movl %eax, −44(%rbp)
29 movb $0, %al
30 callq scanf
31 movq −16(%rbp), %rdi
32 movq −24(%rbp), %rsi
33 movl %eax, −48(%rbp)
34 callq gcd
35 movabsq $.L.str.2, %rdi
36 movq %rax, −32(%rbp)
37 movq −32(%rbp), %rsi
38 movb $0, %al
39 callq printf
40 xorl %ecx, %ecx
41 movl %eax, −52(%rbp)
42 movl %ecx, %eax
43 addq $64, %rsp
44 popq %rbp
45 retq
46 .Lfunc end0:
47 .size main, .Lfunc end0−main
48

49 .p2align 4, 0x90
50 .type gcd,@function

63

51 gcd:
52

53 pushq %rbp
54 .Ltmp3:
55 .Ltmp4:
56 movq %rsp, %rbp
57 .Ltmp5:
58 subq $48, %rsp
59 movq %rdi, −8(%rbp)
60 movq %rsi, −16(%rbp)
61 movq −8(%rbp), %rdi
62 callq labs
63 movq %rax, −32(%rbp)
64 movq −16(%rbp), %rdi
65 callq labs
66 movq %rax, −40(%rbp)
67 .LBB1 1:
68 cmpq $0, −40(%rbp)
69 je .LBB1 3
70

71 movq −32(%rbp), %rax
72 cqto
73 idivq −40(%rbp)
74 movq %rdx, −24(%rbp)
75 movq −40(%rbp), %rdx
76 movq %rdx, −32(%rbp)
77 movq −24(%rbp), %rdx
78 movq %rdx, −40(%rbp)
79 jmp .LBB1 1
80 .LBB1 3:
81 movq −32(%rbp), %rax
82 addq $48, %rsp
83 popq %rbp
84 retq
85

86 .section ".rodata"

87 .L.str:
88 .asciz "Enter an integer: "

89 .L.str.1:
90 .asciz "%ld"

91 .L.str.2:
92 .asciz "The gcd is %ld\n"

Listing B.4: euclidopt.s by Bob Dondero
1

2 .section ".rodata"

3 cPrompt:
4 .string "Enter an integer: "

5 cScanfFormat:
6 .string "%ld"

7 cPrintfFormat:
8 .string "The gcd is %ld\n"

9

10 .section ".text"

11 .equ LABSSECOND, %r13
12 .equ LABSFIRST, %r14
13 .equ LTEMP, %r15
14 .equ LSECOND, %rsi
15 .equ LFIRST, %rdi
16

17 .type gcd,@function
18 gcd:
19 pushq %r13
20 pushq %r14
21 pushq %r15
22

23 pushq %rdi
24 pushq %rsi
25 movq LFIRST, %rdi
26 call labs
27 movq %rax, LABSFIRST
28 popq %rsi
29 popq %rdi
30

31 pushq %rdi
32 pushq %rsi
33 movq LSECOND, %rdi
34 call labs
35 movq %rax, LABSSECOND
36 popq %rsi
37 popq %rdi
38

39 loop1:
40 cmpq $0, LABSSECOND
41 je loopend1
42

43 movq LABSFIRST, %rax
44 cqto
45 idivq LABSSECOND
46 movq %rdx, LTEMP
47

48 movq LABSSECOND, LABSFIRST
49

50 movq LTEMP, LABSSECOND
51

52 jmp loop1
53

54 loopend1:
55 movq LABSFIRST, %rax
56 popq %r15
57 popq %r14
58 popq %r13
59 ret
60

61 .equ LGCD, 0
62 .equ L2, 8
63 .equ L1, 16

64

64

65 .equ STACK BYTECOUNT, 24
66

67 .globl main
68 .type main,@function
69

70 main:
71

72 subq $8, %rsp
73 subq $8, %rsp
74 subq $8, %rsp
75

76 movq $cPrompt, %rdi
77 movl $0, %eax
78 call printf
79

80 movq $cScanfFormat, %rdi
81 leaq L1(%rsp), %rsi
82 movl $0, %eax
83 call scanf
84

85 movq $cPrompt, %rdi
86 movl $0, %eax
87 call printf
88

89 movq $cScanfFormat, %rdi
90 leaq L2(%rsp), %rsi
91 movl $0, %eax
92 call scanf
93

94 movq L1(%rsp), %rdi
95 movq L2(%rsp), %rsi
96 call gcd
97 movq %rax, LGCD(%rsp)
98

99 movq $cPrintfFormat, %rdi
100 movq LGCD(%rsp), %rsi
101 movl $0, %eax
102 call printf
103

104 movl $0, %eax
105 addq $STACK BYTECOUNT, %rsp
106 ret

65

Appendix C

Materials used for Project
Evaluation

Here we present the materials used to evaluate the program. These include the script
used in the preliminary evaluation, the feedback form used in the alpha evaluation,
and the scripts used to automate performance evaluation, all discussed in Chapter ??.

C.1 Preliminary Evaluation Script

• This is the alpha version of Processable, a student’s debugger and program
tracer for x86-64

• Begin by opening the example program hello.s

– This is the Processable interface with hello.s loaded.

– Quickly touring the display, we have the header bar, which contains but-
tons to control the process; from left to right these are restart, step, and
continue.

– Below this, from left to right, we first have the text section, which shows
the assembly code for this program, and the current value of the program
counter. Breakpoints can be set by clicking on any address in the text
section.

– The next section is the console, which is bound to the current process’
stdin, stdout, and stderr. Whenever the process is paused, it can also be
used to issue commands to the debugger.

– To begin the process, and push the arguments onto the stack, type the
command “run” into the console, and press enter.

– On the right is the stack section, which will show the value of every byte
between the stack’s origin and the current value of the stack pointer. The
rightmost column of the stack decodes the values into hex, binary, signed
integer, unsigned integer, or characters in groups of bytes of equal size.

66

The size of the grouping can be toggled by the group of buttons titled
“alignment,” and the decoding for any particular grouping can be toggled
by clicking on the corresponding box.

– On the bottom left is the section for displaying static memory, with tabs
to select the rodata, data, or bss section for display. Labels, addresses,
and contents of memory are shown as bytes and decodings, and can have
their decodings toggled by clicking on the colored button to the left of each
labeled byte group.

– Finally, the Registers are shown in the bottom middle area. Each row
corresponds to a different group of overlapping registers, and the member
of the group whose value is displayed can be toggled by the button to the
left of the row showing the current register’s name. Similarly, the decoding
scheme for the register can be toggled by the colored button at the right
of each row.

– Press the continue button to allow the program to run until completion.
Note that messages printed to stdout show up in the console.

– Return to the home page

• Open the example program euclid.s

– Start the program, and step or continue to the beginning of the main()
function

∗ How would you find the value of the program counter?

∗ What is the value in register %rsp?

∗ On the top of the stack is the return address, what would you expect
that value to be and how would you verify this?

– Set a breakpoint at the first call to printf, and continue until that point

∗ What is the value of %rdi before the call to printf?

∗ What is the string at that address?

– Advance the program until the first call to scanf()

∗ What is the value in %rdi, and what is the string that resides at that
address?

∗ Step past the call to scanf, and enter the value 18 when prompted

∗ What is the return value in %rax, interpreted as a long integer?

∗ What is the value stored at the address just found in %rsi, interpretted
as an integer?

– Continue past the next call to scanf(), enter the value 12 when prompted

– Step until the beginning of the gcd() function

– Set a breakpoint at the je instruction at address 0x804806e

∗ Continue until the breakpoint; what is the value of the zero flag?

67

∗ Repeatedly continue until the zero flag is set

– Set a breakpoint at the return statement from gcd

∗ What is the long integer interpretation of the value about to be re-
turned in %rax?

∗ What is the address to which gcd will return, and what is the instruc-
tion at that address?

C.2 Student Feedback Form

The following google form was linked to by the alpha release, and testers were
encouraged to respond.

68

Bibliography

[1] The annual conference on innovation and technology in computer science educa-
tion. https://iticse.acm.org/.

[2] Transcrypt. https://www.transcrypt.org/documentation, 2016.

[3] The luna language. http://www.luna-lang.org/, 2018.

[4] Cycling ’74. Max 8 and max signal processing.
https://cycling74.com/products/max/, 2018.

[5] Sanjeev Kumar Aggarwal and M. Sarath Kumar. The Compiler Design Hand-
book, chapter Debuggers for Programming Languages. CRC Press Ltd., 2003.

[6] Alexandro Sanchez Bach. Unicorn.js. https://alexaltea.github.io/unicorn.js/,
2016.

[7] Alexendro Sanchez Bach. Capstone js: The capstone disassembler framework in
javascript. https://alexaltea.github.io/capstone.js/, 2014.

[8] Fabrice Bellard and Stefan Weil. QEMU version 2.11.93 User Documentation.

[9] Eli Bendersky. How debuggers work. https://eli.thegreenplace.net/2011/01/23/how-
debuggers-work-part-1, January 2011.

[10] Eli Bendersky. Stack frame layout on x86-64.
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64, 2011.

[11] Randal Bryant and David O’Hallaron. Computer Systems: A Programmer’s
Perspective. Pearson, 2016.

[12] Carlos Rafael Gimenes das Neves. Assembly x86 emulator.
http://carlosrafaelgn.com.br/Asm86/index.html?language=en, 2013.

[13] Edgar Dijkstra. Go to statement considered harmful. Communications of the
ACM, 11(3), March 1968.

[14] Edgar Dijkstra. On the cruelty of really teaching computing science (the sigcse
award lecture). Communications of the ACM, 32:1403–1404, 1989.

69

[15] Inc. Facebook. React: A javascript library for building user interfaces.
https://reactjs.org, 2018.

[16] Fastmetrics. Internet speeds by country. https://www.fastmetrics.com/internet-
connection-speed-by-country.php, 2017.

[17] Mozilla Foundation. Arraybuffer. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/ArrayBuffer, 2018.

[18] Mozilla Foundation. Number. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/Number, 2018.

[19] Free Software Foundation. The GNU Assembler.

[20] Matt Godbolt. How it works: Compiler explorer. https://xania.org/201609/how-
compiler-explorer-runs-on-amazon, 2016.

[21] Ilya Grigorik. Optimizing content effeciency.
https://developers.google.com/web/fundamentals/performance/optimizing-
content-efficiency/, January 2018.

[22] Philip J. Guo. Online Python Tutor: Embeddable web-based program visual-
ization for CS education. In Proceedings of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, pages 579–584, New York, NY,
USA, 2013. ACM.

[23] Phillip Guo. Onlinepythontutor. https://github.com/pgbovine/OnlinePythonTutor,
2018.

[24] David Herman, Luke Wagner, and Alon Zakai. asm.js specification: Working
draft. http://asmjs.org/spec/latest/, August 2014.

[25] Stefan Heule. How many x86-64 instructions are there anyway?
https://stefanheule.com/blog/how-many-x86-64-instructions-are-there-anyway/,
March 2016.

[26] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual.

[27] Tony Jenkins. On the difficulty of learning to program. In Proceedings of the 3rd
Annual LTSN-ICS Conference, 2002.

[28] Peter Kankowski. x86 machine code statistics.
https://www.strchr.com/x86 machine code statistics, 2006.

[29] Ryan Kelly. Pypyjs. http://pypyjs.org, 2015.

[30] Michael Kerrisk. ptrace(2) Linux Programmer’s Manual, September 2017.

70

[31] Johannes Kreidler. Programming Electronic Music in Pd. http://www.pd-
tutorial.com/english/index.html, 2009.

[32] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John
Hamer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders,
Otto Seppälä, Beth Simon, and Lynda Thomas. A multi-national study of read-
ing and tracing skills in novice programmers. In Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education, ITiCSE-
WGR ’04, pages 119–150, New York, NY, USA, 2004. ACM.

[33] Peter Marshall. Embedding v8. https://github.com/v8/v8/wiki/Getting-Started-
with-Embedding, April 2017.

[34] Brad A. Myers. Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing, pages 97–123, 1990.

[35] Thomas L. Naps and Guido Rößling. Exploring the role of visualization and
engagement in computer science education. Technical report, Working group on
Improving Educational Impact of Algorithm Visualization, 2002.

[36] Thomas L. Naps and Guido Rößling. A testbed for pedagogical requirements
in algorithm visualizations. Proceedings of the 7th Annual ITiCSE Conference,
2002.

[37] Anh Quynh Nguyen and Hoang Vu Dang. Unicorn: Next generation cpu emula-
tor framework. In Blackhat Conference USA, 2015.

[38] Pierre Quentel. Brython. https://brython.info, 2015.

[39] Alexander Sandler. How debuggers work. http://www.alexonlinux.com/how-
debugger-works, 2008.

[40] J. Sorva, V. Karavirta, and L. Malmi. A review of generic program visualization
systems for introductory programming education. ACM Trans. Comput. Educ.,
2013.

[41] Juha Sorva. Visual Program Simulation in Introductory Programming Education.
PhD thesis, Aalto University, 2012.

[42] Rob Whitaker. Assemblance: An interactive assembly explorer. Spring Indepen-
dent Work, Princeton University, 2017.

[43] Alon Zakai. Emscripten: an llvm-to-javascript compiler. Proceedings of the 26th
Annual Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 301–312, 10 2011.

[44] Alon Zakai. Emscripten file system api. https://kripken.github.io/emscripten-
site/docs/api reference/Filesystem-API.html, 2015.

71

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Problem Definition

	2 Background and Related Work
	2.1 Debuggers
	2.2 Emulation
	2.2.1 Qemu and Unicorn
	2.2.2 Emscripten and Unicorn.js

	2.3 Visualization Tools
	2.3.1 Evaluation and Classification of Visualization Tools
	2.3.2 Tools focusing on High Level Languages
	2.3.3 Tools Focusing on Assembly Language

	3 Functionality
	3.1 Use Cases
	3.2 Features
	3.2.1 Toggleable Decodings
	3.2.2 gdb Commands

	3.3 Limitations
	3.3.1 x86 Instructions
	3.3.2 C Standard Library
	3.3.3 Addresses and Machine code
	3.3.4 Runtime

	4 Implementation
	4.1 The FixedInt Library
	4.1.1 The FixedInt data type
	4.1.2 The FixedInt ALU

	4.2 The Emulator
	4.2.1 The Assembler
	4.2.2 The Process Object
	4.2.3 Parsing
	4.2.4 Registers
	4.2.5 Memory
	4.2.6 Instruction Set(s)
	4.2.7 C Library Calls

	4.3 Front-end and Debugger

	5 Evaluation and Conclusions
	5.1 User Evaluation
	5.1.1 Evaluations by Instructors
	5.1.2 Evaluations by Students

	5.2 Performance Evaluation
	5.2.1 Instruction Support

	5.3 Future Work
	5.3.1 Minor Improvements
	5.3.2 Improving Architecture Support
	5.3.3 Compilation from C

	5.4 Project Evaluation
	5.5 Conclusion

	A Supplemental Figures
	B Sample Assembly Programs
	C Materials used for Project Evaluation
	C.1 Preliminary Evaluation Script
	C.2 Student Feedback Form

	Bibliography

