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Abstract

Memory bugs in any programming language can be subtle, and frequently
have unpleasant consequences for programmers. However, while many tools
exist to detect the existence of memory bugs, there are no good options to
determine where the bug occurred in the original source code. This makes
debugging code far more difficult and time-consuming. This tool provides a way
to detect such errors at runtime and reports detailed line number information
about the error in the original source code to aid in the debugging process. This
makes corrections of such errors substantially easier, especially for students.
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Introduction

“Computers are like Old Testament gods: lots
of rules, and no mercy.”

— Joseph Campbell

The C programming language is one of the few popular languages with explicit
memory management. Most widely-used languages like Java or Python implicitly
handle the bookkeeping of allocating and freeing blocks of dynamic memory, allowing
the developer to focus on other tasks. While this automatic memory management is
convenient, it comes at a cost. Computing what objects can be safely freed during
execution adds overhead at runtime. Furthermore, the user’s code is periodically and
unpredictably interrupted by a thread that performs “garbage collection” - that is,
freeing objects that are out of scope to the programmer.

C takes a different approach to handling dynamic memory. Programmers are re-
sponsible for allocating and freeing the memory that their program consumes. This
model requires all decisions about when to free memory to be made at compiletime
rather than runtime, and so eliminates the overhead of maintaining reference counts
for objects. Additionally, programmers are given complete control over when their
memory gets freed during execution, without being interrupted by a garbage col-
lection thread. If the programmer manages memory correctly, the resultant code is
necessarily more efficient than if the management was performed implicitly by the
programming environment.

However, as the adage goes, with great power comes great responsibility. While
C programmers have complete control over how their memory space is arranged and
maintained, they must also watch out for memory bugs that cannot occur in man-
aged languages. Should a C programmer mistakenly free an object twice or not at
all, corruption of the memory space or heap exhaustion could occur. There is no
mechanism in the language to inform the programmer that such a bug has occurred
- consequently, these bugs are both common and notoriously difficult to debug.

This is especially true in computer science education. Novice programmers, new to
the concepts of pointers and dynamic memory, frequently have great difficulty tracking
down memory bugs in their code. It is not uncommon for a student in Princeton’s
COS 217 to spend hours debugging a single memory leak. Moreover, students often
bring buggy code to course staff and teaching assistants for help, reducing the amount



of time they might spend helping with other, easier-to-diagnose bugs. My time as a
teaching assistant in COS 217 inspired my decision to write software to automate the
task of diagnosing these bugs, making life as easy as possible for students and faculty
alike.

To address this problem, I have created Dynamaid, a tool that detects common
memory bugs and reports on them in a useful way. In particular, Dynamaid is capable
of detecting memory leaks, double frees, dangling pointers, and memory overflow. In
all cases, Dynamaid knows the names of the variables involved in each bug, and
is frequently able to report the exact line number where the bug occurred allowing
students to immediately fix their code.



Related Work

“You can get help from teachers, but you are
going to have to learn a lot by yourself, sitting
alone in a room”

— Dr. Seuss

Given how common memory bugs are in C code, a number of tools have been
created to aid in their diagnosis. Unfortunately, most current tools do not tell the
programmer exactly what they want to know. Detection of memory bugs is not
enough - programmers, and especially students, want to know where they need to
change their code to fix their bugs, not merely that a problem exists.

This is the primary flaw of a tool like MemlInfo in COS 217. Itself a senior
thesis, MemlInfo is able to detect the existence of memory leaks and memory overflow.
Students are provided with a report of errors after their program executes, like this
one taken from a buggy student submission of the COS 217 shell assignment:

Errors:

xk 16 un-freed bytes (2 blocks) allocated at dynarray.c:103

*x* 24 un-freed bytes (2 blocks) allocated at dynarray.c:91
Summary Statistics:

Maximum bytes allocated at once: 220

Total number of allocated bytes: 7911
Statistics by Line:

Bytes  Location
564  command.c:181

284  ish.c:196
40 TOTAL
Statistics by Compilation Unit:
0 command. c

902 dfa.c

40 dynarray.c
-902 ish.c

40  TOTAL




This informs users of the number of memory leaks that occurred at execution,
along with the line number of the call to malloc() that allocated the leaked object.
Unfortunately, this is usually not enough to tell students where to look to change
their code - frequently, objects are modified in any number of functions, so the leak
could be in more or less any part of the codebase. It would be useful to tell students
exactly where the object was lost to expedite the debugging process.

Even the powerful open-source Valgrind [1] has similar problems. Valgrind de-
tects more bugs than MemlInfo and operates on compiled binary files. This makes
it an excellent general-purpose tool, but because it works on these compiled binaries
it has no access to variable name information or line numbers and so cannot tell
students where to look for bugs. In an academic setting, when dealing with novice
programmers, we as tool designers must do better.
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Functionality

“He made an instrument to know
If the moon shine at full or no.”
— Samuel Butler

Dynamaid helps students correct four different classes of dynamic memory man-
agement errors in their code by reporting the operations that resulted in the bugs and
the line number where they occurred. This frequently makes subtle bugs obvious and
easy to fix. This section will describe and provide examples of the types of bugs we
wish to detect, as well as providing sample executions of the tool and interpretations
of its output.

Memory Leaks

Memory leaks occur when the last reference to an object is lost before that object
is freed. Once this happens, the programmer has no means to deallocate the ob-
ject, which will continue to consume heap space for the remainder of the program
execution. Should a long-running process continually neglect to free memory, it will
eventually face heap exhaustion - future calls to malloc() may fail simply because
there is not enough free heap space to meet the request. Programs that uninten-
tionally use too much heap space may also cause the operating system to perform
paging operations more often, adversely affecting performance. Concretely, consider
the following program that contains a memory leak:

#include <stdlib.h>

int main(void)

{
char *string;
string = (char *) malloc(10);
return O;

}

11



In this simple program, a ten byte block of memory is allocated and referred to only
by the pointer “string.” Upon returning from main(), this reference to the allocated
block is lost without a corresponding call to free() having been issued. Dynamaid
reports that the error occurs when the main() method returns because the variable
“string” was lost at that point. In this case, a user would easily notice that a call to
free() must happen before the return statement.

During the development process it became useful to distinguish between “perni-
cious” and “innocuous” memory leaks. A memory leak is innocuous if, as in the above
example, the last reference to an object is lost at the end of program execution - these
are not really problems, because the program will not be using the heap after it exits.
All other leaks are pernicious, in that they happen in the middle of execution rather
than at the end; such leaks could lead to heap exhaustion and should be fixed by the
programmer. Originally, Dynamaid reported only these pernicious leaks. However,
to stay consistent with COS 217’s definition of “memory leak” my advisor requested
that innocuous leaks be reported as well. Consequently, Dynamaid lists all objects
that were still unfreed at the end of execution, providing a complete listing of all leaks
that occurred.

Double Frees

A double free occurs when free() is called on a block of memory more than once. This
bug corrupts the program’s memory management data structures, either causing a
crash or causing malloc() to return the same memory address twice at subsequent
points during execution, causing some memory to be doubly allocated.

A simple example of a double free would be as follows:

#include <stdlib.h>
int main(void)
{
char *string;
string = (char *) malloc(10);
free(string) ;
free(string) ;
return O;
+

As before, a ten byte block of memory is allocated, but is subsequently freed twice,
leading to unpredictable behavior after the second free. Dynamaid reports the line
number information of both the original and the extra call of free().
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Dangling Pointers

Once a block of memory has been freed, a programmer may no longer assume it
contains any usable data, because the heap memory may have been repurposed since
the block was freed. Pointers to freed memory are called dangling pointers and
dereferencing one results in undefined behavior. An example of a dereference of a
dangling pointer would be as follows:

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(void)

{
char *src = "Hello, World!";
char *dest = (char *) malloc(strlen(src) + 1);
strcpy(dest, src);
free(dest);
printf (dest);
return O;

}

After dest is freed, the call to printf() produces undefined behavior. The program may
print the correct string, it may print garbage output, or it may cause a segmentation
fault. Dynamaid modifies all pointers to the object after it has been freed such that
they point to kernel space on a Linux system, guaranteeing a segmentation fault.
This helps users track down these bugs by guaranteeing that they produce a runtime
error.

In an attempt to provide information about where the dereference actually oc-
curred, Dynamaid catches the SIGSEGV signal. When a segmentation fault occurs,
Dynamaid receives the faulting address; that is, the address a program incorrectly
dereferenced. Dynamaid checks the symbol table to see whether an object corre-
sponds to that address. If it does, Dynamaid reports that a dangling pointer was
dereferenced along with the location of the last successful operation Dynamaid per-
formed. Normally, this is enough to point users to within a few lines of where the
dangling pointer was dereferenced.

13



Overflow and Underflow

Once a user has received a block of memory from a call to malloc(), he or she may only
use as many bytes as were requested. If a user writes before or after the boundary
of the block, Dynamaid reports memory underflow or overflow respectively. Writing
past the bounds of a block can corrupt any data that follows on the heap, leading to
unpredictable behavior.

The following is a common example of memory overflow:

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int main(void)

{
char *src = "Hello, World!";
char *dest = (char *) malloc(strlen(src));
strcpy(dest, src);
printf (dest);
free(dest);
return O;
+

This program forgets to allocate enough memory for the trailing null byte copied by
strepy(). Consequently, the copy operation overwrites the byte immediately following
the allocated block, possibly corrupting the heap and causing unpredictable bugs later
in execution. Dynamaid checks for overflow and underflow when the block is freed,
and reports the line number where the call to free() occurred, informing the user
which object had its boundary overwritten.

Usage

Dynamaid is invoked by the user at build time to produce an instrumented binary
file that performs error checking for the above bugs. Like the MemlInfo tool currently
in use in COS 217, Dynamaid is invoked similarly to the gcc compiler. In nearly all
cases, a student can replace “gcc217” with “gec217dm” in their commands to get their
instrumented binary file. For example, if a user would normally invoke the command:

gcc217 mycode.c -o mybinary
to compile their code, with Dynamaid they would only need to invoke the command:

gcc217dm mycode.c -o mybinary
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to get their instrumented code. The only difference is that Dynamaid accepts an
extra flag that gcc217 does not: a user may pass the “-kill” flag to instruct Dynamaid
to terminate a program as soon as the first memory management bug is found. This
allows a user to avoid being overwhelmed by error messages in a program that has
many bugs. In this case, the user would write:

gcc217dm -kill mycode.c -o mybinary

Though Dynamaid is invoked at build time, error detection happens at runtime.
Consequently, if a program’s execution does not follow the logical path where a mem-
ory bug exists, that bug will not be reported (since, from Dynamaid’s perspective, it
never happened!) Therefore, Dynamaid is a supplement to, and not a replacement
for, thorough testing.

Output

Dynamaid provides users with a great deal of information when a bug has been
found. The messages are terse, in the interest of not cluttering their terminal output
unnecessarily. When a bug is detected, the output is as described below.

Memory Leak

The output when a memory leak is detected is as follows:

Dynamaid: <Error Message>

Assigning from <RHS> to <LHS> *

File: <File Name>

Line: <Line Number>

Variable: <Variable Name>

Depth: <Depth>

Object size: <Size>

This object has been pointed to or returned by:
- <Names>

* denotes optional field.

e Error Message

— “Memory leak detected during free”
When an object is freed, any pointers it contained are lost, decreasing the
reference counts of all objects referenced by those pointers. If a free causes
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a reference count to become zero for an object that has not been freed,
this is the message displayed.

“Memory leak detected within object during assignment”

When the last reference to an object is lost via an assignment, any pointers
that object contained are lost, decreasing the reference counts of all objects
referenced by those pointers. If this causes a reference count to become
zero for an object that has not been freed, this is the message displayed.

“Memory leak detected within object leaving scope”

When the last reference to an object is lost by leaving scope, any pointers
that object contained are lost, decreasing the reference counts of all objects
referenced by those pointers. If leaving scope causes a reference count to
become zero for an object that has not been freed, this is the message
displayed.

“Memory leak detected during assignment.”

During an assignment, one reference to the left hand side of the expression
is lost. If an assignment causes a reference count to be zero for an object
that has not been freed, this is the message displayed.

“Memory leak detected: last reference out of scope.”

When a local variable pointing to an allocated object exits block scope,
one reference to that object is lost. If the end of scope causes a reference
count to become zero for an object that has not been freed, this is the
message displayed.

RHS, LHS

If any of the above situations arise as the result of an assignment operation,
Dynamaid informs a user that a bug occurred while assigning from “RHS”
to “LHS”, where RHS and LHS are the right-hand side and left-hand side of
the assignment expression, respectively. If the leak was not the result of an
assignment, this line does not appear.

File Name
The file in which the last reference to the object was lost.

Line

Number

The line number at which the last reference to the object was lost.

Variable Name
The variable name involved in the operation that triggered the detection of the

leak.

Depth
If an object being freed or lost causes a leak, the leaked object exists somewhere
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in the object graph created by the user. Depth is how many pointer traversals
Dynamaid had to make from the original object to detect the leak.

e Size
The size in bytes of the leaked object.

e Names
The set of all variables that have pointed to this object at any point during
execution.

Double Free

The output when a double free is detected is as follows:

Dynamaid: Double Free detected.

File: <Second File Name>

Line: <Second Line Number>

Variable: <Second Variable>

Object first freed in file "<First File Name>" at line
<First Line Number>, variable "<First Variable Name>"

e File Name
First File Name is the file where the first call to free() occurred. Second File
Name is the file where the second (double) call to free() occurred.

e Line Number
First Line Number is the line at which the first call to free() occurred. Second
Line Number is the line where the second (double) call to free() occurred.

e Variable Name
First Variable Name is the variable name used in the first call to free(). Second
Variable Name is the variable name used in the second (double) call to free().
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Dangling Pointer Dereference

The output when a dangling pointer is dereferenced is as follows:

Dynamaid: Dangling pointer dereferenced (Segfault occurred).
Object size: <Size>

This object has been pointed to or returned by:

- <Names>

The last successful assignment operation before the
segfault was from <RHS> to <LHS> in file ’<File Name>’
at line <Line Number>

Terminating execution...

e Size
The size in bytes of the dereferenced object.

e Names
The set of all variables that have pointed to this object at any point during
execution.

e RHS, LHS
The right and left-hand sides of the last successful assignment Dynamaid per-
formed.

e File Name
The file where the last successful assignment Dynamaid performed happened.

e Line Number
The line at which the last successful assignment Dynamaid performed happened.
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Memory Overflow/Underflow

The output when memory overflow or underflow is detected is as follows:

Dynamaid: Memory overflow/underflow detected.
File: <File Name>

Line: <Line Number>

Variable: <Variable Name>

e File Name
File Name is the file where the object whose boundaries had been overwritten
got freed.

e Line Number
Line Number is the line at which the object whose boundaries had been over-
written got freed.

e Variable Name
Variable Name is the variable used in the call to free() that exposed overflow.
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Design

“It is a mistake to think you can solve any
major problems just with potatoes.”

— Douglas Adams

This senior thesis is the continuation of a junior independent work project from
Spring 2013. In this sense it is the product of three semesters of work. However, the
final product bears little resemblance to the previous independent work submission.
Dynamaid works by instrumenting user code to maintain reference counts of objects
and execute our error-detection logic at key points at runtime. This section discusses
the evolution of the tool at a general level and describes the exact algorithms used
for bug detection.

Evolution

In Spring 2013, the Dynamaid tool was only intended to detect memory leaks and
double frees, with dangling pointer handling as a stretch goal. The main difficulty
involved in memory leak detection is instrumenting arbitrary C code with function
calls to maintain reference count information at runtime. A tool that was sensitive
to the syntax of C would be required to handle truly arbitrary code. However, such
a project is well beyond the scope of a one-semester project. To ease this burden,
Dynamaid users would have been required to include annotations in their code and
refrain from using certain (otherwise valid) C coding conventions.

This approach worked reasonably well considering the timeframe allowed to im-
plement it. However, if the user’s annotations were incorrect or outdated, Dynamaid
would not work - ironically, these “pseudobugs” were more difficult to identify than
the memory leaks themselves. Naturally, any solution acceptable for use in COS 217
would need to be significantly more robust and require little to no user intervention.

To truly achieve the goal of working on arbitrary C code, a full-blown C parser
capable of understanding and manipulating any valid C syntax was required. With
two semesters available to complete this senior thesis, my advisor and I decided that
a difficult but attainable goal would be to construct such a parser. With this goal in
mind, I spent the first month of the fall semester learning to use the Flex and Bison
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UNIX utilities. Flex and Bison [2] are designed to generate parsers from user-input
grammar files. Because they are so powerful, they are used in a variety of compilers.
However, this should give some sense of the difficulty of the project we were about
to undertake - if successful, we would have implemented a large part of a C compiler.
Due to the project’s difficulty, my advisor suggested that I might talk to Professor
David Walker, a member of Princeton’s COS faculty with a specialty in programming
languages, before beginning to write actual Flex and Bison code. After considering
our project, Professor Walker suggested that we look into the open-source CETUS
project from the University of Purdue.

CETUS [3] is a C source-to-source conversion tool originally designed to safely
parallelize sequentially-written C code. The main page for the tool explains that
“CETUS” is not an acronym - rather, it says, “The constellation Cetus is a sea
monster. A C monster.” Written in Java, CETUS’ underlying code provides an
object model for the C programming language with objects that represent assignment
expressions, function calls, and other C constructs. CETUS represents a C program
as a tree of these objects - building on CETUS involves traversing and modifying this
tree. This process is significantly more robust and maintainable than modifying C
grammar files.

Of course, CETUS has limitations. One issue is that it supports only the C90
standard, so input files that mix declarations and code cause the tool to crash. This
is not an issue in the context of COS 217, which requires student code not only
to adhere to the C90 standard but also to compile without even the most pedantic
warnings from the compiler. The expectation, in other words, is that student code
will be relatively simple and clean. Another issue from a maintenance perspective is
that the tool’s documentation is generally poor, with a limited tutorial and a sparsely-
commented Javadoc. As a result, most of my understanding of this tool comes from
actual visual inspection of the source code and experimentation with simple input
programs. Nevertheless, once understood, CETUS performs reliably and therefore
has become the backbone of this thesis project.

CETUS allows Dynamaid to instrument student code to maintain the reference
count information and perform bug checks at runtime. The following section describes
in detail how the Dynamaid code accomplishes this.

Implementation

The Dynamaid tool is comprised of three main parts:
1. C data structures and functions that perform runtime checks and report bugs.
2. Java code that instruments student C code to use these structures and functions.

3. A Python script that performs preprocessing, calls our Java code, and invokes
the gce compiler to produce the executable binary.
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Preprocessing

One of the most inconvenient parts of using CETUS for this project was that line
number information is stripped away when the program tree is created. In order
to report line numbers for each bug, a mechanism was required to force CETUS
to include line number information in the program tree, without changing anything
about how the program itself executes.

The natural solution to this problem is to use pragmas. Dynamaid first runs a pass
over all the student code and removes the comments while preserving line numbers.
Then, it generates a new file where after every line from the original student code
comes a line of the form

#pragma MemMgr:LINENUM:

where LINENUM is the line number in the original code of the line that follows.
A CETUS pass will retain this pragma information, so line number information is
available (albeit in a roundabout way) to our instrumentation code.

Instrumentation

Once line number information has been embedded in the student source code, Dyna-
maid can begin instrumentation. Once CETUS has been invoked, Dynamaid receives
the program tree, the nodes of which represent all code from all files that the stu-
dent gave at the command line. Any code outside of function calls is handled at
compiletime, as per the C90 standard. Therefore, since all of our instrumentation
involves operations that happen at runtime, Dynamaid only considers code that re-
sides within functions. Global variables may be safely ignored, except as they appear
within functions.

For every function in the student submission, the first step is to generate enter-
Scope() and leaveScope() calls for each formal parameter at the beginning and the
end of the function. This allows us to keep track of references that are created as
the result of a function call - if the pointers correspond to an object that has been
allocated, it is important that Dynamaid be able to increment its reference count. An
enterScope() call is generated for all formal parameters, even if they are not pointer
variables - our C backend must, therefore, be smart enough to ignore spurious calls
to this function. We briefly considered an approach that would only generate enter-
Scope() calls for pointer types, but this complicated the handling of typedef’d pointer
types unnecessarily.

As an implementation wrinkle, not all types of parameters can be passed to en-
terScope(), which takes a void* as argument. Some variable types cannot be cast
to void* - in particular, Dynamaid does not generate function calls for enumerable
variables. This is perfectly fine, since an enum will never reasonably be a pointer in

the context of COS 217.
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In order to handle variables leaving scope within a function, Dynamaid then walks
the body of the function and collect information on each compound statement. A
mapping is created between compound statements and the variables declared within
them. This mapping allows us to place leaveScope() calls at the end of the correct
compound statement, effectively figuring out scope information for the object (which
CETUS does not provide for us out of the box.) Additionally, Dynamaid can use
this information to tell which variables are in scope at any point in the code. This is
vital when it comes to handling return statements, which force all local variables out
of scope. To handle return statements, Dynamaid walks the tree looking for returns,
identifies all variables in scope at that point, and adds leaveScope() calls right before
the return statement.

All that remains is to replace assignments with function calls. As with enter-
Scope() calls, assign() calls cannot be generated for variables that cannot be cast to
type void*. Dynamaid therefore ignores assignments involving variables of enumer-
able type since they will never reasonably be pointers. Dynamaid again walks the
tree finding assignment expressions. CETUS gives us both sides of the expression
for free, making it a simple matter to construct the call to assign. For a standard
assignment operation of the form

ptrl = ptr2;
Dynamaid generates a call to the assign function that looks like:
assign(&ptrl,ptr2,sizeof (ptr2),"ptri","ptr2","filename.c",linenum) ;

The first argument is the address of a pointer, since the assign() function must
change the contents of ptrl. Dynamaid must also pass in the size of the object
because whatever is being assigned is automatically promoted to a 4-byte void*, even
if it was originally only a 1-byte char. Without the sizeof() mechanism the assign()
function would always copy 4 bytes to the left-hand side of an assignment, resulting
in (ironically enough) memory overflow.

Rather than handle each one of the C assignment operators with its own func-
tion (e.g., having an assignSubtract() function corresponding to the “-=" operator),
Dynamaid simply modifies the second argument of the assign function instead. For

example, if Dynamaid encounters an assignment of the form

then it would make the second argument to the assign function
a-b>b

This pattern continues for all ten of C’s assignment operators.

To find the filename for any tree element, Dynamaid needs to walk up the tree
to the root. The children of the root node in the program tree are of type Transla-
tionUnit, and directly correspond to the files CETUS was invoked with. Every other
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element in the tree has a TranslationUnit as an ancestor - finding this ancestor allows
Dynamaid to get the filename that it contains.

To find the line number corresponding to an object, Dynamaid traverses the tree
keeping track of the last pragma that it found. After the preprocessing step, it can
be sure that there is a pragma for every line in the code - the most recent one found
during the instrumentation pass corresponds to the line number of the current tree
element.

The last step is to override the standard library dynamic memory management
functions. Dynamaid walks the tree one last time looking for function calls to mal-
loc(), calloc(), realloc(), or free(), and replace them with calls to Dynamaid’s C
functions named MemMgr_malloc(), MemMgr_calloc(), MemMegr_realloc(), and Mem-
Mgr_free(). Usefully, CETUS allows us to do this in a much more robust way than
the MemlInfo tool does. MemlInfo overrides the library functions with a set of fragile
preprocessor directives - CETUS allows us to not only make direct, reliable changes
to the function name but also to its arguments. For instance, since many bugs can
be detected on a call to free(), error location information is included in the call. In
the solution, calls like

free(pointer);

become

MemMgr_free(pointer, "pointer", linenum, "filename.c");

Making this change without access to a C parser would have required at the very
least a complicated regular expression, and would have been a debugging nightmare.
Runtime Error Detection

Once the instrumentation step is complete, Dynamaid has successfully wired the
student’s code together with our runtime error-detection logic. What remains is to
use the information from the instrumentation to report runtime issues.
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The most important runtime component of Dynamaid is the global symbol table
that stores all information about allocated objects. The symbol table maps from
pointer addresses to info_t structs that contain important information about the ob-
ject. In particular, the info_t struct looks like:

typedef struct {
size_t refCount;
int isAllocated;
size_t size;
name_t *name;
addr_t *addr;
char *freedFile;
char *xfreedName;
int freedLine;

} info_t;

o refCount
The number of references currently pointing to this object.

e isAllocated
False if the object has been freed, true otherwise.

® size
The size in bytes of the object.

e name
A linked list of all variable names that have pointed to this object.

e addr
A linked list of all pointer addresses that have pointed to this object.

e freedFile, freedName, freedLine
If the object has been freed, these are the filename, variable name, and line
number of the original call to free.

With this information, Dynamaid can to detect and report each of the four classic
memory bugs. The algorithms for each are detailed below.
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Memory Leaks The problem of detecting and reporting memory leaks is simply
described. If any operation would cause an allocated object’s reference count to reach
zero, then Dynamaid has found a leak and should report that operation. This implies
that Dynamaid must successfully perform two tasks:

1. Accurately maintain reference counts, and

2. Accurately determine how many references are lost during an operation

The practical upshot of this is that users are informed immediately after a leak has
occurred and receive the exact location of the error. In fact, this method would also
allow us to implement garbage collection - instead of reporting a leak, Dynamaid
would simply free the object.

There are four main ways that reference counts can change. The first three are
simple and their effects trivial to predict.

1. A formal parameter is passed into a function.
If a pointer is passed into a function as a formal parameter, it becomes, for all
intents and purposes, a local variable to that function. If the pointer currently
points to an object, that object’s reference count is increased by one. This is
handled by calling enterScope() for all formal parameters.

2. A local variable leaves scope.

This can happen either when a variable reaches the end of its block scope, or
as the result of a return statement. Whenever a pointer to a valid object leaves
scope, that object’s reference count is decremented by one. If this operation
results in a reference count of zero for an allocated object, Dynamaid reports a
leak. This is handled by the leaveScope() function. There is one exception to
the above. If a reference is returned from a function, Dynamaid does not report
a leak for that object even if there are temporarily no variables that point to
an allocated object. This is to prevent spurious warnings in function’s whose
purpose it is to allocate, initialize and return an object. These functions are
common in COS 217. Consider the following function that creates a (useless)
linked list:
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#include <stdlib.h>
struct node {
struct node *next;

};

static struct node *getList(){
struct node *first;
struct node *second;
struct node *third;
struct node *fourth;

first = (struct node *) malloc(sizeof (struct node));
second = (struct node *) malloc(sizeof (struct node));
third = (struct node *) malloc(sizeof (struct node));
fourth = (struct node *) malloc(sizeof (struct node));

first->next = second;
second->next = third;
third->next = fourth;
fourth->next = NULL;

return first;

}

When this function returns, there is temporarily no pointer to the first node
in the list - however, the list is not lost because a reference is returned to the
caller. Bugs where students forget to catch a returned object from a function are
rare, so Dynamaid ignores this possibility in order to reduce spurious warning
messages. Of course, this means that if a student really does forget to catch an
object being returned from a function, Dynamaid will not report it.

3. An assignment is evaluated.
If there is an assignment of the form

ptrl = ptr2;
then whatever ptr2 points to gains a reference, and whatever ptrl was pointing
to loses a reference. In the case where ptrl and ptr2 are the same, no reference

counts change.

However, the fourth way a reference count can change is significantly more compli-
cated. Suppose, as in our linked list example, that object A contains the last reference
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to object B. Further suppose that a user frees object A. Then object B has been lost,
and there is a memory leak. Therefore, when freeing an object Dynamaid must take
into account the pointers that object contains. To do this, when an object is freed or
leaked, Dynamaid walks over the memory it contains, looking at every four consec-
utive bytes and checking if they (taken as a pointer) correspond to another object.
If they do, it decrements the reference count for that object. If that object is itself
leaked as a result of this changing reference count, this process repeats recursively,
walking the user’s object graph via depth-first search until there are no more leaked
objects.

Unfortunately, the problem is even more complicated. Consider a circular linked
list, as opposed to the NULL-terminated linked list in the last code example. A client
of this linked list would hold a single pointer to the first node. If this pointer were
ever lost, the entire list would be lost to the user - all four nodes would be lost at
once. However, the reference count for the first node would not be zero; after all, the
fourth node in the list still contains a reference to the first one! In other words, the
client’s loss of their reference to the first node counts double. Not only is the first
reference lost, but also any reference to the first node from later in the list is too.
This problem generalizes to any user object graph that contains a cycle.

Early versions of the Dynamaid tool did not handle cycles in the object graph.
The solution was to handle the loss of any reference in two passes. The first pass
was a prediction step. This would run depth-first-search on the user’s object graph
starting at the object that was losing a reference. At each node, the number of
references to the original object would be counted. The total number of references to
the original object after all nodes had been visited is the number of references to the
original object that will be lost. If this number (plus one for the original reference
loss that caused us to look at the object in the first place - e.g. the user losing their
handle to the first node in the list) is equal to the current reference count, Dynamaid
concludes that the first object has indeed leaked. If it has been leaked, a second
round of depth-first-search begins from the root node exactly as described above.

Dangling Pointers Dangling pointers were originally a stretch goal for this thesis,
and for good reason: it is difficult to come up with a good way to handle them.
Simply having a dangling pointer in your code is not a bug. These are only bugs if
they are dereferenced. Even with CETUS, instrumenting every single memory access
in user code (which is the only way to truly detect the bug immediately) was too
difficult and unreliable to implement.

One of the reasons that dangling pointers are so difficult to detect is that they
produce unpredictable behavior. Frequently, even after an object is freed, its contents
remain in the same place on the heap. Therefore, subsequent memory accesses could
return the correct bytes, and the program would continue unscathed. Our strat-
egy, therefore, was to force programs that dereferenced dangling pointers to cause a
segmentation fault and crash the program.
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The first step to achieving this was maintaining a list of pointer variables that
pointed to each allocated object. The addr linked list in the info_t struct for an
object contains the addresses of each pointer that had ever pointed to this object -
this list was updated every time the assign() function was called. Then, when an
object was freed, Dynamaid would set all of these pointers to a strategic value that
pointed to kernel-space on the nobel cluster, guaranteeing a segmentation fault on a
subsequent dereference.

There were a few difficulties implementing this approach. The first was that it was
difficult to know when to remove a pointer from the list of addresses. Suppose one
of the pointers was a local variable to a function that had just returned. When the
function returns, the stack shrinks and that pointer address is no longer in writable
memory. In a sense, we had our own (intentional) dangling pointers to addresses
on the stack! Removing these pointer addresses required knowing what the active
stack frame was before and after a function returned - practically an impossible task
from Dynamaid’s point of view. Instead, Dynamaid simply never removes an address
from the list. To prevent Dynamaid from crashing when accessing an out-of-bounds
address, we needed some way to predict whether a memory access would cause a
segmentation fault.

Remarkably, this can be checked easily with the following code [4]:

int fd[2];
if (currAddr->oldaddr == NULL) continue;
if (pipe(£fd) >= 0) {
if (write(fd[1], currAddr->oldaddr, 128) > 0)
if (*(currAddr->oldaddr) == ptr)
*x (currAddr->oldaddr) = modPtr(ptr);
close(£d[0]);
close(fd[1]);

Here, Dynamaid effectively uses the return value of the write() system call to ask
the operating system whether the address at oldaddr is in bounds. If it is, then the
pointer is set to our strategic value.

Originally, Dynamaid reasonably set these pointers to NULL after a free. Unfortu-
nately, this proved too destructive. In particular, it completely prevented Dynamaid
from detecting double frees. After the first free() completed, all references to the
object became NULL, including any references that were subsequently freed.

In order to handle double frees and dangling pointers simultaneously, a more
clever solution was required. We needed a transformation of dangling pointers that
guaranteed a segmentation fault, but was also reversible so that MemMgr_free() could
still determine whether the pointer corresponded to something that had been freed
before.

30



The solution relies on the fact that on the nobel cluster, malloc() always returns
a memory address that is a multiple of four. Consequently, the low-order two bits are
always zero - these are free bits that Dynamaid can use in this transformation. Addi-
tionally, any pointer whose high-order two bits are ones is a guaranteed segmentation
fault on the nobel cluster. The transformation applied therefore takes the highest
order two bits and stores them in the two free bits at the end of the pointer. The
high two bits are set to ones. This is a pointer that guarantees a segmentation fault,
but where the original pointer is recoverable - simply replace the high two bits with
the original bits, and set the low two bits to zeros.

This was successful in forcing segmentation faults for dangling pointer dereferences
- unfortunately, it was not particularly useful in describing where the bad dereference
occurred. To offer some debugging help in this situation, Dynamaid remembers the
information of the last operation it performed. A handler was installed to catch the
SIGSEGYV signal. This handler outputs the information about the last operation,
along with information about the object responsible for the fault. This is determined
by looking up the faulting address in the symbol table. This information is surpris-
ingly useful in debugging dangling pointers, and is enough to point students to the
area where the fault occurred.

Double Frees Double frees are significantly easier to detect than the above is-
sues. After reversing the transformation applied to detect dangling pointers, a simple
lookup in the global symbol table suffices to see if the object has been freed before. If
it has, report a double free along with information about where the first free occurred.

Memory Overflow As was the case with dangling pointers, memory overflow is
difficult to detect immediately after it occurs. Once again, this is because in order
to detect overflow Dynamaid would have to intercept every memory access and check
whether the user is writing to a part of the heap that it owns. This is too much for
Dynamaid to handle.

However, Dynamaid can easily detect overflow and underflow after the fact. When
a user requests memory via a call to malloc() or calloc(), eight bytes are allocated
in addition to the amount the user actually asked for. This allows for two four-byte
sentinels, one before and one after the block of memory being returned to the user.
The reason for using four-byte sentinels instead of one-byte sentinels is to ensure
that the address returned to the client is still a multiple of four so that dangling
pointer detection and double free detection still works. When a user frees an object,
Dynamaid checks to ensure these sentinels are intact. If they are not, then overflow or
underflow has been detected, and Dynamaid reports this along with the corresponding
call to free, variable name, and object information.
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Testing Methodology

“We have to continually be jumping off cliffs
and developing our wings on the way down.”

— Kurt Vonnegut

When students in COS 217 submit their assignments, they are generally told that
their work will be graded “...on quality from the user’s and programmer’s points
of view.” In particular, “From the user’s point of view, [a] program has quality if
it behaves as it should.” This section, discusses the testing process to determine
whether Dynamaid indeed behaves as a user would expect.

Of course, Dynamaid is not a COS 217 assignment. There is no reference solution
to match, nor is there any test suite provided to be reasonably sure the code is
correct. Instead, testing was done on a more ad-hoc basis. As development continued
and new features were added to the tool, the tests we put it through became more
sophisticated. Because Dynamaid aims to accept arbitrary C code as input, a three-
tiered testing approach suggested itself, with each tier comprising more difficult tasks
than the one before it. The three tiers were as follows.

e Tier 1: Unit Testing
The tests in this tier were short, often nonsensical programs that usually con-
tained no more than one or two functions. Most of the time, these were com-
posed to test a single feature in the context of a certain data structure or code
layout.

As an example of a unit test, consider the following code designed to test mem-
ory overflow detection.
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#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(void)

{
char *to_copy = "Hello, World!\n";
char *not_enough;
/* Forgotten about null byte */
not_enough = (char *) malloc(strlen(to_copy));
strcpy(not_enough, to_copy);
printf (not_enough) ;
/* Should report overflow */
free(not_enough) ;
return O;

}

This test is sufficient to determine whether, in the most basic of circumstances,
Dynamaid can detect memory overflow.

This type of testing has two important advantages. First, tests like the above
can be composed very quickly and executed very cheaply. This lends itself
nicely to regression testing. After any significant change to the codebase, these
small tests can be run to provide a sanity check that previous functionality was
not negatively impacted. Second, if these tests fail, then they are generally
the simplest programs that cause the incorrect output - this is very valuable
when debugging, since there are relatively few parts of the input that could
have caused the error. In fact, a number of these test cases are the result of
fault-driven testing; when Dynamaid bugs were found at higher tiers, a tier 1
test was created for that bug. Constructing the minimal example that causes
the error was my first step when bugs were found on more complicated inputs.

Tier 2: Fault Injection

Unit tests by themselves are unlikely to expose any but the most superficial bugs
in Dynamaid. To increase confidence that the tool was behaving as it should,
more complicated test cases were required. Ideally, whatever tests we created
would be similar to COS 217 assignments that Dynamaid would eventually be
exposed to. At this stage, in order to decrease the number of coding problems
that could reasonably affect Dynamaid, faults were only injected into COS 217

34



assignments that were known to be bug-free. In particular, simple faults were
injected into the reference solutions to the courses Symbol Table and Shell
assignments. The code for these tests cannot be included in this document in
order to preserve the integrity of the assignments for future classes, but they
generally represented the most common instances of each of the four memory
bugs that Dynamaid detects.

These tests were considerably more stressful on Dynamaid. The input files
were larger, and there were many more dynamic memory operations than in
the tier-1 tests. The advantage to this type of testing is that it is far more likely
to expose errors in Dynamaid - the disadvantage is that their cause would be
much more difficult to track down. Consequently, whenever this fault injection
testing caused Dynamaid problems, a simple test case was added to the first
tier to handle it.

e Tier 3: Real Student Submissions

This is by far the most stressful type of test for Dynamaid. Low-scoring sub-
missions from the Fall 2013 semester of COS 217 were selected and run through
Dynamaid. Usually, these did not reveal bugs in error detection. When Dyna-
maid failed on these files it was usually the result of a crash during the instru-
mentation step. Students frequently use strange coding constructs that violated
assumptions Dynamaid made about coding style. Most of the time when these
were found, the strange coding practices were accommodated - those that were
not are listed in the known limitations section below.

Known Limitations

e Combined declaration statements and initializations are not supported.
This is a bug in Dynamaid, but not a terribly intrusive one. In particular,
statements like

char *string = NULL;

cause the tool to fail if “string” will ever point to memory that will be managed
dynamically. Instead, users should write

char *string;
string = NULL;

to accomplish the same task.
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e Only one assignment operator may be used per statement.
In particular, statements of the form

cause Dynamaid to crash during the instrumentation phase. Instead, users
should write

b = c;
a = b;

This is also a more explicit style that may help students track down other bugs
in their code, anyway.
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Evaluation

“Three things are to be looked to in a building:
that it stand on the right spot; that it be
securely founded; that it be successfully
executed.”

— Johann Wolfgang von Goethe

It is one thing to know whether the Dynamaid tool works as specified. The
testing methodology from the previous section convinces us, to the extent possible,
that Dynamaid functions correctly. It reports each of the four main bugs reliably in
all test cases - in this sense, the tool was “successfully executed.”

It is another thing altogether to know whether it “stands on the right spot” -
that is, whether the tool is indeed useful when it comes to debugging code. This is
more difficult to assess. Simply asking students whether they used the tool and found
it helpful is unlikely to produce reliable results; most students have little experience
with code that requires explicit memory management, and so have nothing to compare
Dynamaid to. Without context, student feedback would not be objectively helpful.

Originally, the plan to objectively evaluate Dynamaid had been to run experiments
on the grading process of the shell assignment for the Spring 2014 semester. Each
grader could have been assigned to a group that used Dynamaid to track down bugs
in student submissions, or to a control group that could only use the current course
tools. Any time difference between the two groups could be attributed to the use
of the tool. This only assumes that on average, the graders in each group would
be equally skilled, and that student submissions by precept are likely to be equally
buggy. Unfortunately, this report was due to be completed before the assignment’s
due date.

Consequently, we contented ourselves with a much simpler process. At its core,
our evaluation was still a time-trial. My version of the shell assignment from the Fall
2011 semester was injected with a number of dynamic memory management bugs.
This version was given to my advisor, who was instructed to time how long it took him
to debug the program using anything but Dynamaid. Of course, Dynamaid detected
all of the bugs immediately, making fixing them relatively easy.

The code for the assignment was relatively clean. It passed all style checks
from splint and Dynamaid’s cousin, critTer, and received a nearly perfect score at
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submission-time in the Fall 2011 semester. Additionally, most of the five inserted
bugs were inspired by common mistakes students often make in their assignments -
bugs which my advisor was very familiar with. Nevertheless, from start to finish the
debugging process took him 27 minutes. If one of the most experienced debuggers
in the COS 217 course took that long to discover all the bugs in a relatively clean
version of the shell assignment, it is a safe bet that it would take students significantly
longer.

In reality, of course, most students likely would not solve all the bugs at all,
instead bringing their code to their preceptor or course lab TAs looking for help.
According to the Princeton registrar, 176 students were enrolled in COS 217 in the
Fall 2013 semester. If even a small subset of these students saved more than 20
minutes of debugging (likely much, much more), this would considerably ease the
strain on course staff at busy times of year.

Out of sheer curiosity, after the debugging trial ended my advisor compiled his
fixed version of the shell assignment with Dynamaid and ran it to see if any additional
bugs remained. This was unlikely - after all, the code had just been subjected to a
battery of official grading scripts and been reported clean. Remarkably Dynamaid
correctly reported a dangling pointer in the code! This was not a fault injection -
it was a bona fide bug that had been in my original submission when I had taken
the course. Effectively, this bug had eluded me, my original grader, and my thesis
advisor, surviving two full grading sessions. Dynamaid detected it immediately, and
provided enough information to quickly correct the issue. We conclude that Dynamaid
is indeed useful to the COS 217 class.
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Future Work

“I am tomorrow, or some future day, what I
establish today. I am today what I established
yesterday or some previous day.”

— James Joyce

The Dynamaid development process went remarkably well. Originally, the tool
was only intended to detect memory leaks and double frees, and act as a supplement to
the MemlInfo tool which also detected memory overflow. This goal alone was daunting.
However, not only did we accomplish both of these tasks, but we also implemented
our stretch goals of detecting dangling pointer dereferences and memory overflow as
well. Dynamaid now implements all the features of MemlInfo, and reports bugs in a
much more informative and useful way. It now stands to replace MemlInfo in coming
offerings of COS 217.

In this sense, Dynamaid is a complete product. There were no more stretch goals
left to implement at the time of this submission. However, there are still a few ways
in which future developers may wish to improve the final product.

The first is to tackle the known issues described in the testing section. The issue
regarding expressions that evaluate multiple assignments is very low-priority, but it
would be useful to address the fact that variables cannot be declared and initialized
in the same statement. Such a construct is common in student code when they would
like to set a newly declared pointer variable to NULL. Incidentally, this problem may
have been fixed already. There was simply not enough time to test whether the issue
has been resolved.

Such bug fixes are unlikely to be enough to motivate a subsequent independent
work project on their own. However, certain Dynamaid output could be made sig-
nificantly more informative if a future developer would take the time to instrument
every memory access within student code. At present, Dynamaid does not report
precisely where dangling pointer dereferences or memory overflow occur, opting in-
stead to report an area of the code likely to be responsible. If all memory accesses
could be intercepted, it would be possible to report exactly where these bugs occur
in the same manner as memory leaks and double frees. This would require modifying
the Java code that builds on CETUS to instrument all ways memory can be modified
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in C - simply comprising this list alone is likely to be tricky. Nevertheless, I believe
it should be possible to implement as an independent work project.

An interesting extension of the project would be to detect bugs beyond memory
management issues. Perhaps, for instance, it would be possible to detect whether
a program is vulnerable to buffer overrun attacks. It may also be possible to build
on CETUS in a way that allows more intelligent and informative code profiling to
help diagnose performance issues. These are things that are not truly tested for in
COS 217, but it would be interesting to create a whole suite of diagnostic tools like
Dynamaid.
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