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ABSTRACT

We explore how two different mechanisms for reasoning about
state, linear typing and the type, region and effect disci-
pline, complement one another in the design of a strongly
typed functional programming language. The basis for our
language is a simple lambda calculus containing first-class
memory regions, which are explicitly passed as arguments
to functions, returned as results and stored in user-defined
data structures. In order to ensure appropriate memory
safety properties, we draw upon the literature on linear type
systems to help control access to and deallocation of re-
gions. In fact, we use two different interpretations of linear
types, one in which multiple-use values are freely copied and
discarded and one in which multiple-use values are explic-
itly reference-counted, and show that both interpretations
give rise to interesting invariants for manipulating regions.
We also explore new programming paradigms that arise by
mixing first-class regions and conventional linear data struc-
tures.

1. INTRODUCTION

One of the classic challenges in programming languages
research is to design mechanisms that help programmers
reason about the behavior of their code in the presence of
imperative operations such as update and deallocation of
memory. Over the past 15 years, two techniques for solving
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this problem have repeatedly found success:

e Linear type systems, which have been derived from Gi-
rard’s linear logic [11] and Reynolds’ syntactic control
of interference [24], and

e The type, region and effect discipline developed by Gif-
ford and Lucassen [10] and refined by Jouvelot, Talpin
and Tofte [17, 26, 28].

Despite the individual successes of these techniques, there
has been little research that attempts to understand the re-
lationships between the two or how to unify them in a single
language. Hence, in this paper, we investigate how they may
be fruitfully used together in the domain of memory man-
agement.

1.1 Regions

The starting point for our development is a simple func-
tional programming language that contains programmer-
controlled regions. A region is simply an unbounded area
of memory or “address space” where values such as function
closures, lists or pairs may be allocated. The sole purpose
of these regions is to group objects with similar lifetimes.
When no object in a region is needed to complete the rest
of the computation, the region (and all of the objects con-
tained therein) may be deallocated. Experimental results
indicate that this batch-style deallocation can be very effi-
cient in practice, rivaling or exceeding memory management
via malloc and free or garbage collection in many situations
[8, 12].

As an example, consider the function Pair:'

Az, gen, 7).
let 7’ = gen () in
let y=z X zat r’ in
r’X yat r

Pair has three arguments: a value z that will be duplicated
and returned in a pair (call it y), a first-class function gen
that returns the region r’ used to hold the pair and finally,
a region r that will hold the ultimate result (the pair y and
the region r’ that it was allocated in). The expression z X
z at 7’ allocates a pair of z’s in the region 7’

The function Pair has many of the features that make
our language interesting. Most importantly, regions, like

'Normally, function closures, like other storage objects, are
allocated in regions, but we will ignore this detail in our
informal introduction.



other values, are ordinary first-class programming objects.
They can be passed as arguments to functions, returned as
results and stored in data structures. In order to program
with regions, we must also be able to allocate new ones,
and we do this using the alloc primitive. When a region
is no longer needed, it can be deallocated using the free
primitive. Given these two primitives and the expression
let z x 2’ = e in €', which projects the two components z
and z’ from the pair e for use in the expression €', we can
write the following code, which uses the Pair function.

let gen = A() — alloc () in
let r = alloc () in

let r’x y = Pair (17,9en,r) in
free(r);

let zx 2’ = yin

free(r’);

T+ 7’

Of course, programming with regions, like other forms of
explicit memory management, is fraught with danger. If a
programmer accidentally deallocates a region too early, then
chaos ensues as his or her program chases dangling point-
ers. Forgetting to deallocate a region is almost as bad since
it causes a memory leak. Tofte and Talpin [28] solved this
problem by developing a type-and-effect system to check the
safety of programs that use regions. Unfortunately, their
type system is based on the notion that regions must be
used in a first-allocated/last-deallocated, stack-like fashion
and moreover, that regions are intrinsically second-class ob-
jects. Other proposals for static region-based memory man-
agement [31, 14] and optimizations of Tofte and Talpin’s
original model [4, 2] helped to alleviate some of the expres-
siveness problems, but these proposals are often very com-
plex. Moreover, none of these efforts consider regions to be
first-class programming objects. As a result, the simple Pair
function will not type check in previous systems.

1.2 Safety through Linear Types

Linear type systems have been used many times before to
guarantee safety in the presence of explicit memory manage-
ment operations for individual objects. These type systems
provide information about the last use of a data structure,
and clearly, if we are guaranteed that a data structure has
been used for the last time, we can safely deallocate it. The
simplest linear type systems [19, 1] actually guarantee that
linear data structures are used exactly once. After this one
use, the data structure is a deallocated. More sophisticated
type systems [30, 6, 18, 15] make it possible to use “linear”
objects several times, but still provide support for detect-
ing the last use of such objects. The main disadvantage of
memory management through linear type systems is that
they restrict the amount of sharing/aliasing that can occur
in linear data structures. As a result, programs are often
forced to copy entire data structures or to maintain reference
counts on every object, both of which can lead to excessive
time and space overhead.

In this work, we take a new approach to the problem of
safe, explicit memory management. In order to avoid restric-
tions on sharing between individual data structures and to
avoid maintaining per-object reference counts, we group ob-
jects into regions. However, rather than attempting to craft
our own custom region-based type system from scratch, we
will take advantage of a large body of pre-existing literature

designed specifically for controlling volatile resources — the
literature on linear type systems. The combination of both
regions and linear types has never been studied before and
it is highly effective, yielding much more than the straight-
forward sum of the individual systems.

1.3 Contributions

The main contribution of this paper is to explore the syn-
ergy between linear type systems and region-based mem-
ory management. To this end, we have designed a simple
lambda calculus of first-class regions in which a linear type
system controls the use, reuse and deallocation of regions as
well as other objects such as pairs or closures.

Because regions are, for the most part, ordinary first-class
programming objects, it is relatively straightforward for us
to adopt existing ideas from the literature on linear type sys-
tems. In this paper, we will actually study two such systems
although we believe there are several more related type sys-
tems that can be combined effectively with regions. The first
is a purely static system derived from Wadler’s early work
on linear type systems [30]. The derived rules for manipu-
lating regions easily capture the effect of Tofte and Talpin’s
letregion construct. The second type system has a very
different behavior from the first as it is derived from the
reference-counting interpretation of linear types discovered
by Chirimar, Gunter and Riecke [6]. Reference-counting
adds a dynamic component to the language that increases
the flexibility of the system but gives fewer static guarantees.
Finally, by combining ideas from Wadler with the reference
counting interpretation, we obtain new invariants that make
it possible to manage deferred reference counts.

Another important component of our system is that no-
tions of linearity are applied uniformly across our language:
any storage object can be linear or not. This helps to con-
tribute to the simplicity of our language. It also implies that
programmers can freely mix ordinary linear data structures
with regions, which gives rise to additional new memory
management invariants. For example, programmers will be
able to define heterogeneous linear lists in which every ele-
ment of the list inhabits its own region and therefore may be
deallocated independently of any other elements in the list.
In contrast, previous region-based type systems could only
represent homogeneous lists, where every element inhabited
the same region and therefore no list elements could be deal-
located until the entire list was dead. Previous region-based
type systems have also had difficulty dealing with muta-
ble data structures. Related techniques make it possible to
handle mutable data structures more effectively than before.
Unfortunately, due to space considerations we are unable to
explain them here (See a preliminary version of this work
[32] for details).

One important problem that we make no attempt to solve
in this report is the issue of type inference. As a result, the
current work could be viewed as a specification for an ide-
alistic compiler intermediate language, rather than a source
programming language.

In the remainder of this paper, we present a language of
regions and linear types in more detail. Section 2 describes a
core calculus including features for allocating and deallocat-
ing linear regions, pairs and functions. Section 3 describes
the execution model for the language. Sections 4 and 5 ex-
tend the language with reference-counted regions and lists
respectively. The latter demonstrates how to define hetero-



geneous data structures. Finally, section 6 discusses related
work.

2. THE CORE LANGUAGE

Our core language arises by layering ideas drawn from
Wadler’s linear type system [30] on top of a call-by-value
lambda calculus with first-class regions.

2.1 The Types

We first explain our choice of linear type system and then
proceed to augment the language of types with types for
regions.

2.1.1 Linear Types

Our linear type system includes two different variants of
every storage object: there are two forms of closure, two
forms of pairs and later there will be two forms of regions.
The “linear” variant classifies objects that are referenced by
exactly one pointer and are “used” exactly once.? Linear
objects are deallocated after they are used. The “intuition-
istic” variant classifies objects that can be used an unlimited
number of times (including not at all). In this system, by
contrast with linear logic, linearity is inherent in the types
themselves, rather than in the context in which they appear.

We write 7, 2 7 for generic functions where the quali-
fier ¢ is either ., indicating an intuitionistic function that
may be used many times, or 1, indicating a linear function
that must be used exactly once.® After its single use, the
closure containing the function’s free variables will be deal-

located. Likewise, we write 71 ; 7o for generic pair types.
A linear pair is deallocated after its components have been
projected. Normally, we will suppress the “” annotation
above the intuitionistic types. Hence, we write 71 X 72 for
an intuitionistic pair.

In our formal work, we will use () as a base type and as-
sume it may be used many times. We could have introduced
two variants of () just as we have two variants of the other
types, but instead we will assume that there is no cost to
using () (an actual implementation need not allocate it in
the store) and therefore no need to define the linear vari-
ant. In our examples, we will use other base types, such as
integers, assuming they may be freely copied.

For simplicity, we did not include multi-argument func-
tions in our language. However, we can simulate them easily
using single-argument functions that accept linear pairs as
arguments. Therefore, in our examples, rather than write

int x int — int we will often write (int, int) — int.

In order to preserve the single-use invariant of linear ob-
jects, it is necessary to ensure that intuitionistic objects
do not contain linear objects. The term formation rules
help maintain this invariant by preventing linear assump-
tions from being captured in intuitionistic closures. These
rules are discussed in more detail in section 2.2. In addition,
we consider intuitionistic pairs with linear component types,

such as (71 x T2) X T3 to be syntactically ill-formed.

?Beware, we will later introduce an operator that temporar-
ily converts a single-use object into a multi-use object.
3Notice that the function is used once or many times. Unlike
type systems based directly on linear logic, these function
types say nothing about how often their arguments are used.
The number of uses of an argument is determined exclusively
by the argument’s type.

2.1.2 Regions

Regions are unbounded extents of memory that hold groups
of objects. Every region has a unique name, denoted using
the meta-variable p, that can be used to identify the region
and the objects it contains. For most purposes, regions are
just like any other storage objects. In particular, a region
with name p has a type that may be qualified as either linear

or intuitionistic: rgn(p). When a region has linear type, it
may be deallocated.

When a value is allocated in a region with name p, the
type of the value is tagged with p. For example, a closure in

p has type 71 Y roat p and similarly with pairs. For the sake
of uniformity in our formal language we will assume that all
stored objects are allocated in some region and therefore
that all function and product types are annotated “at p,”
for some region p. However, in our examples we will assume
there is some global top-level region named “_” that is al-
ways accessible and is never deallocated. This convention
allows us to simulate an ordinary linear type system simply
by allocating all objects in _. Whenever we omit a region
annotation “at p” or (see the next section) “atr,” assume
the data structure lives in the region _

In order to use functions in many contexts, they must
be polymorphic with respect to the names of their region
arguments. A polymorphic function is considered linear (in-
tuitionistic), if the underlying monomorphic function is lin-
ear (intuitionistic). For example, the intuitionistic function
TwoInts, which returns a pair of integers in its argument
region p, could be given the type

V[p]-rgn(p) — (int x int at p)

Sometimes, we will wish to define functions that return new
regions they have allocated. For this purpose, we will use
an existential type. The simplest such function is the gen
function defined in the introduction. It takes no arguments
and returns some new region p, so it is assigned the type
() = 3p.rgn(p)-

Traditional region-based type systems disallow objects of
existential type, as existentials allow regions to escape the
scope of their definition, and, normally, deallocation is linked
to the scope of region definition. Our system is similar in
that if we want to be able to deallocate intuitionistic regions,
we must place some constraints on the way they flow through
programs. However, we do not have to restrict the flow of
linear regions — linear typing will ensure that deallocation
is safe. Therefore, an existential type is permitted to hide
the name of a linear region but is not permitted to hide the
name of an intuitionistic region. Moreover, existential types
are themselves linear, meaning that they may be opened
exactly once. We will explain the rules for manipulating
existentials in more detail in section 2.2.

2.1.3 Summary of Type Syntax

Figure 1 summarizes the syntax of the type language. It
also documents a subset of the types, ranged over by the
meta-variable I, that we refer to as “intuitionistic” and a
disjoint subset, the linear types, ranged over by the meta-
variable L. Types (and later terms) are considered equiv-
alent up to renaming of bound variables. We implicitly
assume that type contexts, A, contain no repeated region
names. We concatenate two type contexts using the nota-
tion A, A’. If A and A’ have any region names in common



Au=-|Ap

¢ =1

Tu=L|TI

L:= rg}n(p) | 71 x s at p|V[Al.11 > mat p| Ip.r

I:=()|rgn(p) | L x Iz at p|V[A]l.n > T2 at p
Figure 1: Syntax: Types

Fu=-|T, 27

ex=zx|()]er;e2

¢
| e1 x ez at e3 | let £1 X 2 = e1 ines
| N[Alz:r S ey at e | e1[A] ea
| pack[p, e] as Jp.7 | unpack p,x = e; ines
| alloc e | free e
| let £ =e1 ines | let! (y) x =e1 ines

Figure 2: Syntax: Expressions

then the notation is undefined. The judgment A F 7 states
that the free variables in 7 are contained in A and that
intuitionistic types do not contain linear component types.

2.2 Expressions

Figure 2 presents the expression syntax. As usual, the
syntax includes variables as well as introduction and elim-
ination forms for each type of object. Each of the intro-
duction forms (aside from alloc, the introduction form for
regions, which always introduces linear regions) uses a qual-
ifier to indicate whether a linear or non-linear value is intro-
duced.

We also include two forms of let-expression. The first is
standard; it binds the variable x to the value computed by
expression e; and then continues to compute the result of
e2. The second let-expression has the same effect as the
first at run time. However, the static semantics are derived
from Wadler’s let! construct[30]. At compile time, the
input region ¥y, which must initially have linear type, is given
intuitionistic type in the expression e; and then linear type
again in e».? Through this device, we can use a “linear”
region y multiple times and later recover its linear type,
which allows us to deallocate the region. In the following
informal example, we allocate a linear region, use it twice to
allocate two pairs and then delete it.

let y = alloc () in
let! (y) =(3%x5at y) x7at yin
free(y)

In order to use let! safely, it is necessary to ensure that
no references to y escape from e; and into es. In the example
above, only pairs allocated in y escape, not references to y
itself, for if a reference did escape, we could not justify y’s
linear typein es. The type system will prevent references to
y from escaping by performing an analysis of the type of e;.
We will explain these operations more fully in conjunction
with their typing rules, but before we can proceed with the
formal semantics we must present a few auxiliary definitions.

“Note that the variable y is free, not bound in this expres-
sion.

2.2.1 Notation

The typing rules for expressions have the form A;T'Fe: 7
where T is a finite map from variables to types. The domain
of I" will include all the free variables in e. We assume bound
variables are appropriately alpha-converted before being en-
tered into the context. As for type contexts, the notation
I, IV is undefined unless the domains of I' and I" are dis-
joint. Our type system relies upon a nondeterministic oper-
ation I' = 'y & I'y that splits the linear assumptions in T’
between the contexts I'y and I';. The intuitionistic assump-
tions in I' appear in both I'y and I's>. We will often write
I' =T < 'y < I'3 as an abbreviation for I' = T'; < IV and
' = I's < I's.

We also use the notation ld;. When ¢ is -, all the types
in I' must be intuitionistic. When ¢ is 1, I' is unrestricted.
This notation is used to prevent intuitionistic objects from
containing linear objects. Since I' is just a finite map, we
implicitly allow exchange of any two assumptions in the con-
text. Weakening and contraction will be admissible on intu-
itionistic components of the context, but not on linear ones.

We use the notation e[z;/z2] and e[p1/p2] to denote stan-
dard capture-avoiding substitution of expression variables
and regions into expressions.” The notation e[A;/As] ex-
tends region substitution pointwise to region contexts, and
is only defined if A; and Az have the same number of ele-
ments.

2.2.2 Typing Rules for Expressions

The typing rules for expressions are derived from consid-
eration of three main invariants:

1. An object of linear type must be “used” exactly once.

2. Any access to a region (i.e.allocation within a region
or use of an object within a region) must be accompa-
nied by proof that the region is still live.

3. If an object contains a reference to an intuitionistic
region, the region must appear in its type.

The first invariant is enforced mainly through careful ma-
nipulation of the type checking context and the use of the
nondeterministic splitting operator. The second invariant is
enforced by requiring that the program present a reference
to a region every time the region is accessed. We subse-
quently ensure that there is a reference to a region if and
only if the region is still live. The third invariant is enforced
by conditions on the formation of closures and existential
packages, which otherwise could capture references to an in-
tuitionistic region without its being mentioned in the type.
This final invariant ensures it is possible to perform a type-
based analysis to prevent stored intuitionistic regions from
escaping the scope of a let! expression.

Figure 3 presents the typing rules for expressions. The
first three rules do not involve regions so they are the nor-
mal typing rules for a linear lambda calculus. The rule for
variables requires that the context I' contain only intuition-
istic variables — we must not let linear variables go unused.
The rule for unit is similar. The last of the three is the
rule for sequencing. It uses the context splitting operator

®Because of the way we have defined our operational se-
mantics (see section 3), only variables are subsituted into
expressions—arbitrary expressions are never substituted.
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A;T ke : rgn(p)
A;T Ffreee: ()

=1 =Ty ATiker:nn ATy, zmiber:m
A;T'Hletz =epiner: 7

F=T1=xTyxls AT Ry rg}n(p)
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Figure 3: Well-formed Expressions

to divide the linear variables between the first and second
expressions in the sequence.

The rules for pairs and functions are more complex since
we must worry about accessing regions. Pairs are allocated

using the expression e; X ez at ez where e; and es com-
pute values that form the components of the pair. The pair
is allocated into the region denoted by expression es. As in
the typing rule for sequencing, the splitting operator divides
the linear variables between the three expressions. There
are two further details to notice in this rule. First, the third
expression should have type rgn(p), the type of an intuition-
istic region. We do not allow allocation into a linear region
because we do not want an allocation to be the single use of
a linear region. What would be the point of allocating an
object in a region that could not be used in the future? It
would be impossible to use the object itself.® In a moment,
we will define an operation that temporarily converts linear
regions into intuitionistic regions in order to allow access to
linear regions without having to deallocate them.

A second subtle but important aspect to this rule is that
it explicitly maintains the invariant that intuitionistic ob-
jects (in this case intuitionistic pairs) do not contain linear
objects. It does so through the well-formedness judgment
on the result type of the expression. If the pair’s qualifier ¢
is - then this constraint specifies that the component types
must not be linear.

The elimination form for pairs, let z1 X T2 = e1 in ea,
projects the two components of the pair e; and binds them
to 1 and z» before continuing with the expression es. If eq
inhabits region p then we must ensure that this region is still
live. Otherwise, this access is a memory error. A reference
y to the region is extracted from the context to witness that
the region is still live.

2.2.3 Escaping Regions, Function Closures and Ex-
istential Packages

Unless we are careful, function closures will be able to
capture references to intuitionistic regions without revealing
these references in the type of the closure, breaking invariant
3 listed above. Therefore, we require all functions to be
closed with respect to intuitionistic regions. If a function
wants to access a value in an intuitionistic region, that region
must be explicitly passed as an argument to the function.
Hence, the “latent effect” of the function, a concept found
in standard effect systems [17, 28], is represented as part of
the type of the function argument. The closure requirement
is enforced by the predicate closed,(r) (pronounced “r is
region-closed with respect to p”).

closed,(rgn(p)) = false

closed (71 % mat p') = closed,(m1) A closed,(12)
closed,(3p’.7) = closed,(t) (if p' # p)
closed ,(T) = true (otherwise)

In clause two above, p’ may or may not be equal to p and
the pair is still closed if its components are. The predicate
is used to rule out references to intuitionistic regions (with

5There are other ways we could organize our language so
that access to linear regions is allowed and yet access does
not constitute the single use of a linear region. For example,
an allocation operation could return a pair of the allocated
object and the reference to the region. This would essen-
tially require that programs be written in A-normal form.



type rgn(p)) which carry with them the privilege to access
a region, but it does not rule out references to objects (such
as pairs or closures) within an intuitionistic region. Notice
that linear regions are always closed. We use the notation
closed(7) (pronounced “r is region-closed”) when closed , (1)
for all regions p. We lift the definition of region-closed point-
wise to contexts I'.

Given these definitions we can now interpret the typing
rules for functions (see Figure 3). As before, the splitting op-
erator partitions the linear assumptions between the context
used to check the function body and the computation that
generates the region into which the closure is allocated. If
the closure is an intuitionistic object then following our rule
about no linear objects inside intuitionistic objects, the con-
text used to check the function body can contain no linear
variables. Finally, this context must also be region-closed.
Therefore, the function closure cannot contain references
to intuitionistic regions (although it can contain pairs and
other functions that inhabit intuitionistic regions). Section
2.3 explains how to lift the region-closed restriction.

The rule for function application ensures the region name
arguments (A’) match the expected region name parameters
and that the argument has the expected type. As in the
elimination form for pairs, the existence of a reference to
the region containing the function (z) serves as proof that
the region is still live.

Existential types pose difficulties similar to those already
described for function closures, and the solution we have
adopted is the same. In fact, given Minamide, Morrisett
and Harper’s interpretation of function closures as existen-
tial packages [20], existential types may be viewed as the real
source of the problem. To ensure that intuitionistic regions
can be restricted to a particular program scope, we require
the type 7 to be closed with respect to intuitionistic regions
named p when we form an existential of type Jp.7 using the
pack expression. The elimination form for existentials is the
standard unpack expression.

2.2.4 Region Allocation and Deallocation
The alloc primitive returns a new, linear region. It natu-

1 . ..
rally has type () —3p.rgn(p). The free primitive consumes

a linear region and has the type Ep.rgln(p) —(). However, we
do not treat these primitives as constants with these types
because our operational semantics is slightly more elegant
if we treat them as expressions with their own typing rules
(see Figure 3). For programmer convenience, it is unnec-
essary to pack the argument to free as an existential (the
region name in the premiss of the typing rule for free may
be viewed as implicitly existentially quantified).

Intuitionistic regions are introduced and eliminated using
let! as explained earlier. One of the key constraints in the
typing rule is that the type of e; should be region-closed
with respect to p. This prevents intuitionistic references to
p from escaping from e; into es.

We have introduced let! as an orthogonal programming
construct so that the central concept may be understood in
isolation from other expressions in the language. However,
it is useful to be able to make a linear region temporarily in-
tuitionistic in many different program scopes, not just those
connected with a let! expression. A more general treatment
would permit expressions of the form let! (y) pattern =
e1 in ez. We use the following instance of the more general

construct in the example we are about to present:”
I'=1I4 l><1F2><1F31><1F4

ATy Fy: gn(pr)
@
A;To,yirgn(pi) Fer: 11 X 2 at po

A;Fg,y:rg}n(pl),xlzn,mz:m Fex:m
A;Ty,y:rgn(p1) b 2 : rgn(p2)  (for some 2)

A;TFlet! (y) 1 X x2 =erines : 73

Example. Now we can look at how to type the example
given in the introduction. The text of the example has only
been changed to add typing annotations, pack and unpack
instructions, and linearity annotations (! and *).

. 1
Alpl(z:int, gen:() = 3p".rgn(p"), r:1gn(p)) —
unpack p’, ' = gen () in
let! () y =z x zat r' in
pack[p’,r’ x yat r] as Tres

The function gen generates fresh linear regions, and there-
fore it has type () — 3p’.rgn(p’). The region argument r is
given intuitionistic type because it is used by Pair, but is not
deallocated by it. Therefore, the context calling Pair must
retain an alias to r in order to deallocate it. The function re-
turns a value of type Tres = 3p’.1gn(p’) x (int x intat p')at p.
The calling context may be typed as follows.

let gen = (A() — alloc ()) in
unpack p,r = alloc () in
let! (7) Zres Pair[p](17, gen, r) in

unpack p', z = Tres in
let! (r) 7' xy =zin
free(r);

let! (r') z x 2’ =y in
free(r');

z+

2.3 Relation to the Tofte-Talpin Language

There are close connections between our let! and Tofte
and Talpin’s letregion. Both constructs use a type-based
escape analysis to ensure safety. When Wadler first intro-
duced let! into his linear lambda calculus, he had no notion
of a region name, so his analysis was very imprecise. Since
a region type contains a unique region name, it is a form of
singleton type, a very precise classifier that makes the mod-
ified construct much more effective. In fact, it is possible to
define a letregion construct in our calculus:

letregionp,r ine def
unpack p,x = alloc () in
let! (z) y =e in
free x;y

A general translation of the Tofte-Talpin language into our
calculus is not possible without significant run-time over-
head. The primary barrier is that (simplified) Tofte-Talpin

"This construct can be defined within the language without
overhead if the pair that is accessed is allocated in some
region other than y. Otherwise, we must incur the cost of
an allocation and immediate deallocation of a linear pair:

1
let! (y) 2= (let 1 X 2 = e1 inz1 X T2 at _) in
let £1 X £2 = z in ea.

(closed ,, (11,72))
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@ .
A;T1, Ty F (A[A]er Be), : VA7 S 7 at p
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Figure 4: Well-Formed Stored Values

closures have type 71 % T2 at p where 9 is the set of regions
{p1,--.,pn} that the function accesses. Equality on these
types is modulo equality of sets of regions. One might try to
translate Tofte-Talpin closures into closures with the form
rgn(p1) X -+ X rgn(pn) x ((rgn(p1) x - -+ X rgn(pn),m1) —
T2at p)at p, but such a translation does not preserve equal-
ity (pairs are not associative, commutative, etc.). Therefore,
if a translation from Tofte-Talpin is desired one must gen-
eralize our function types to include an effect on the arrow
and use the following rule where closed;(I") requires I' be
closed with respect to all regions other than those in :

¢ .
F:(Fl,l"z)txll";; A,A"‘T d)gA
[
A,A';Fl,m:'r Fei:m ATt esr: rgn(p)

AT FANA z:r Y o1 at e : VAT Y 1 at p

In addition, the definition of closed,(7) must account for the
new closure types:

closed ,(V[A"].7 2 7 at p') = false (if p € ¥)

With these modifications we can capture the simple Tofte-
Talpin closures. However, capturing the Tofte-Talpin notion
of effect polymorphism is not trivial and we differ it to future
work. For the remainder of this paper, we concentrate on
the closure types defined earlier in the paper, as they are
all we need to explore the relationship between regions and
linear types.

3. THE ABSTRACT MACHINE

Programs in our language execute on an abstract machine.
An abstract machine state (X) includes the list of live regions
(A), a description of the store (H), a stack (.5) representing
the current continuation and, finally, the expression to be
evaluated.

The store maps variables to stored values (s), which may
be unit, a function closure allocated in region p, a pair allo-

(closed(T'1))

ATES : 1=

A;f‘F-:T=>T

P:Pl l><1P2 A;Pl,l‘:’rl FE[.’K]:TQ
A;PQI_S:TQ = T3

ATHE, S i1 =13

T =Ty (2, T3) ATy Fy:rgn(p)
A;Fg,x:rg}n(p) FS:m=mn
A;TFletlz=yin S: 11 = m

(closed,(11),
closed,(T'2))

Figure 5: Well-Formed Stacks

cated in region p, an existential package, or the data struc-

ture associated with a region (dtfta(p)).8 The stack contains
a list of evaluation contexts E, which are expressions with
a hole 0. The notation E[e] denotes the expression formed
by filling the hole in F with e. A stack can also contain the
special instruction let! x = y in S, which is used to repre-
sent the action of the let! expression in the static language.
We will discuss this construct in further detail in the next
section.

w
Il

O | (@1 X 22, | Ao i 5 e),
| pack|[p, z] as Jp.7 | data(p)

H == -|H,#»s
S u= -|E,S|letlz=yin S
3 ]
E == Oje|Oxeratey|zxDOate

| z1 ixgat O]letzy xxzo=01iney
| NAlz:r S eat O] O[A] e | 2[A] O
| pack[p, 0] as 3p.7 | unpack p,z = ine
| alloc O | freed|let z =Oine
> = (A;H;Sje)

In order to facilitate the proof that our type system is

sound, we extend the source language type system to the
abstract machine, giving well-formedness conditions for ma-
chine states, the store, stored values and stacks. These rules
is to guarantee the following simple facts:

o There is exactly one region data structure in the store
for each live region.

e All stored values are well-formed with appropriate types.

e The expression to be executed and the stack are well-
formed with respect to the current store.

Aside from the typing rule for the special let!, which
is discussed in more detail below, the typing rules for the
abstract machine are quite intuitive. The rules are shown in
Figures 4 through 6.

8In the ML Kit, the data associated with a region includes
a pointer to the beginning of the region in memory and a
pointer to the current allocation point within the region [27].
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Figure 6: Well-Formed Machine States

3.1 Operational Semantics

In order to define the operational semantics, we will need
to define some additional notation. We require that no vari-
able appear more than once in the domain of the store.

Thus, the notation H:# s implicitly requires that x not
be in the domain of H. Similarly, the notation Hi, H> for
the concatenation of two stores is undefined unless the do-
mains of Hy and H» are disjoint. The operation H(x) selects
the object at address x from store H. If x does not appear
in the store then the operation is undefined.

When an intuitionistic object is used, it remains in the
store. However, when a linear object is used, it is deallo-
cated. The following two operations (— for intuitionistic

1
objects and — for linear objects) implement this behavior.
H-z = H
1
(H#s,H)—x = HH

The operational semantics for the language is given by a

mapping from machine states to machine states. This map-
ping is presented in Figure 7. In general, an introduction
form is evaluated by choosing a fresh address® and extending
the store with the appropriate value allocated at that ad-
dress. When allocating in a region, the operational seman-
tics verifies that there exists a live region with that name.
An elimination form such as a projection or function call is
evaluated by looking the pair or function up in the store,
ensuring that the region inhabited by the pair or function is

9By fresh address, we mean an address that does not already
appear in the domain of the store. The freshness constraint

is implicit in the formal rules.

still alive and finally taking the appropriate action.

The penultimate rule in Figure 7 explains how to evalu-
ate a let! expression. It removes the linear copy of the
data structure associated with region p from the store and
replaces it with an intuitionistic copy at a fresh address z.
At the same time, the current stack S is extended with the
evaluation context for a let expression, and this new stack
is wrapped with the special let! stack form. In summary,
the final stack is:

let! y = z in (let x = O in ey, S)

The purpose of this construction is to preserve the infor-
mation that intuitionistic references to p do not appear in
the stack (let £ = [ in ey, S). The special let! construct
does this by preserving the information that the stack is
well-formed in a context that is region-closed with respect
to p. The typing rule for the let! stack form makes this
idea precise. The closure condition on the stack justifies the
removal of the intuitionistic region data structure from the
store once the current expression has been evaluated.

The last operational rule eliminates the intuitionistic re-
gion p from the store. It replaces the reference to p with
a dummy value (we use unit) and extends the store with a
fresh reference to a linear copy of p:

(A; Hy, z » data(p), Hy;let! y = z in S;z) —

1
(A Hi,z = (), H2,y > data(p); S; x)

Ordinarily, if we were to replace an intuitionistic value with
another value of a different type (say, if we replaced a func-
tion value with unit), there would be no guarantee that the
resulting store would be well-formed. However, due to the
closure conditions on the formation of function values and
existential types, we can guarantee that this replacement is
sound. The resulting store type is related to the original
store type through the erasure function:

erase , (rgn () = 0
¢ / ¢ /
erase,(T1 X T2 at p') = erase,(71) X erase,(m2) at p
erase,(3p'.7) = 3p'.erase, (1) (if p’' # p)
erase,(T) =7 (otherwise)

Notice that the structure of erase,(7) follows the struc-
ture of closed,(r) exactly and that neither need recurse into
the structure of function types (due to the closure require-
ments on function formation). We lift the definition of era-
sure pointwise to contexts I'. Now we can prove that the
potentially dangerous replacement of rgn(p) by () does lead
to a well-formed store, albeit one with type erase,(T"):

LemMA 1. If A' + (H,y — data(p),H') : T store and
A &+ (H,y — data(p),H') live and A" D A then A’ +
(H,y— (), H') : erase,(T) store.

This lemma allows us to show that the store remains well-
formed when the operational rule for let! is executed. How-
ever, we must also show that the stack and variable x remain
well-formed. The key to this proof is that when a type 7 (or
context I') is region-closed, it is equal to its erasure:

LEMMA 2. If closed,(7) then erase,(t) = 7.

Therefore, using the closure conditions on the stack S
and the variable x implied by the typing rule for let! we
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(A; H; S; Ele]) — (A H E, Sie)
if e not a variable

(A H; E, S;x) — (A H; S; Elz])
(A;H;85()) — (A H, 29 (); S5 x)

(A; H; S; (z5e)) — (A H; Sse)
if H(z) = ()

(A H; S5y ; zoat z3) — (A H,y — (x1 ; Z2)p; S5 y)
if H(z3) = data(p) and p € A

(A;H; S;let £y X x2 =y ine) —
(A;H L y; s efat, @b /a1, 22))
if H(y) = (z} % zh)p and p € A

(A H; S; M\ ANe:r S e at y) —
(A H, 2z (NA]z:r 5 €),: S 2)
if H(y) = data(p) and p € A

(8 H; S5 2[A] 2a) — (A5 H = 3 S3e[Aa /D llwa /1)
if H(z) = (\Af]zsir Be), and pe A
(A; H; S;pack[p, z] as Fp.7) —
(A; H,y + pack|p, z] as 3p.7; S} )
(A; H; S;unpack p,y = ¢ ine) —
1
(A H —a; Sselp/plly' /y])
if H(z) = pack[p’,y'] as Jp.7
(A; H; S;alloc ) —
1
(A, p; H,y ~ data(p), z - packlp,y] as Ip.rgn(p); S; 2)
if Hiz) = () and p ¢ AUFV(H)UFV(S)
(A, p, Ao H; S £ree z) — (A1, Aoy H — ,y = (); S )
1
if H(z) = data(p)

(A;H; S;let x = ' ine) — (A; H; S; e[z’ /x])

(A;H; S;let! (y) x =e1 ines) —

(A H =y, 2+ data(p);
let! y = z in (let x = O in ey, S);e1[2/y])

1
if H(y) = data(p)
(A; Hy, z + data(p), Hy;let! y = z in S;z) —
1
(A; Hi, 2= (), Hz,y = data(p); S; 7)

Figure 7: Operational Semantics

are able to prove that S and z are still well-typed in the
new machine state, and equally importantly, have the same
type. Thus, the well-formedness of the abstract machine is
preserved during this operational step.

3.2 Properties of the Core Language

We have proven a type soundness theorem for our core
language. Given the recent research on proving soundness
of Tofte and Talpin’s region calculus [31, 13, 5] it should
come as no surprise that we were able to apply syntactic
techniques to the problem.

To state our Type Soundness theorem, we will define the
stuck states. A state X is stuck if ¥ is not a terminal state
of the form (A; H;-;z) and there is no state ¥’ such that
Y — Y. We also use the notation — to denote the
reflexive and transitive closure of —».

THEOREM 3 (TYPE SOUNDNESS). If H ¥ : 7 program
and ¥ — %' then ¥ is not stuck.

4. REFERENCE COUNTING

So far, our implementation of the intuitionistic linear type
system allows objects of intuitionistic type to be shared
(i.e.there may be many pointers to these objects). Objects
of linear type, on the other hand, are always unshared and
therefore they may be collected immediately after they are
used. These decisions lead to a completely static memory
management discipline. Unfortunately, the lack of aliasing
for reusable (linear) objects has its disadvantages: it is nec-
essary to copy linear objects in some situations to preserve
the single pointer invariant and this copying can lead to
unnecessary memory use. Alternatively, it is necessary to
convert linear regions into intuitionistic regions for signifi-
cant portions of a program and to delay region deallocation
beyond the point at which a region is semantically dead.

Chirimar, Gunter and Riecke [6] proposed an entirely dif-
ferent model of linear logic. They used reference counting to
keep track of the number of pointers to an object. The lin-
ear type system ensures that reference counts are maintained
accurately. Reference counts add a dynamic component to
the memory management system that complements a purely
static approach. Rather than having to copy objects or con-
vert linear regions into intuitionistic regions, it is possible
to manipulate reference counts.

In general, one can augment the calculus of previous sec-
tions with a third qualifier (#) and manage regions, pairs,
closures or other heap-allocated objects by reference count-

ing.!® Here, for simplicity, we concentrate exclusively on

reference-counted regions, which we give type rqg#n(p). The
new type of reference-counted regions belongs to the class
L of linear objects — implicit contraction or weakening of
assumptions with this type is not admissible.

We extend the language of expressions with operations
to allocate reference-counted regions, explicitly increment
reference counts, and explicitly decrement the count (and

Y0One does have to be careful to ensure that reference-
counted objects contain intuitionistic objects only, not lin-
ear objects or other reference counted objects. This may be
accomplished using techniques similar to those of previous
sections which ensure that only intuitionistic objects appear
inside of intuitionistic objects.
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Figure 8: Reference Counting Constructs

deallocate the region when the count reaches zero):

#
e := ---|alloce|letx,y =inceine |dece

Figure 8 defines additional rules for type checking expres-
sions.

In the previous sections, the let! operator made it possi-
ble to temporarily treat linear regions as intuitionistic ones
to avoid costly copying. Here, we can use the same con-
struct to temporarily increase reference counts without the
runtime cost of having to do the actual increment opera-
tion. This trick also conveniently allows us to reuse all the
allocation and access rules for pairs and closures for both
reference-counted regions and other sorts of regions.

Example. To demonstrate our new reference counting op-
erations, we will reuse our previous Pair example, but this
time rather than allocating two linear regions, we will only
allocate a single reference-counted region. The Pair func-
tion itself is unchanged, except for its type, which specifies
that it expects the gen function to be linear and to return a
reference-counted region. The code for the function follows.

We use the abbreviation 74 for the type 3p'.7jn(p') and Tyes
1
for 3p’.rgn(p’) x (int x int at p') at p.

Mp] (z:int, gen:() = 74, r:rgn(p)) —
unpack p’,r’ = gen () in
let! (r)y=z xzat r in

1
pack[p',r’ x yat r] as Tres

The code that calls the Pair function allocates a reference-
counted region r and then increments the reference count,
creating a second reference r’. This second reference is
stored in gen’s closure. When the Pair function is called,
we use the let! operator to temporarily allow more refer-
ences to r then there are reference counts. At this point,
there is a reference count of two (due to the single inc in-

struction), but three references to r: one reference to r is in
gen’s closure, a second reference is an argument to Pair and
a third reference is retained by the calling context. When
Pair returns, the reference count is decremented to 0 and
the region is deallocated.

#
=alloc () in

unpack p,r

let r,r' =inc (r) in

let gen = (A() - pack[p, '] as 74) in
let! (r) res = Pair|p](17, gen,r) in
unpack o', z = Tres in

let! (r) 7' X y ==zin
let! (F)z x 2’ =y in
dec (r');

dec (1);

z+

5. CONTAINER DATA STRUCTURES

One of the primary weaknesses of region based memory
management on its own is that all container data structures
are homogeneous with respect to the regions that their ele-
ments inhabit. In other words, all elements of a list, tree,
or other recursive datatype are required to inhabit the same
region. Consequently, all elements of any given list or tree
must have the same lifetime. For long-lived containers for
which both insertions and deletions are common, this strat-
egy can incur quite a cost as none of the objects that are
removed from the collection can be deallocated until the en-
tire collection is deallocated.

Tofte and others [27] have developed clever programming
techniques to avoid this problem in many cases. In essence,
they manually mimic the action of the copying garbage col-
lector. More specifically, they periodically copy the con-
tainer data structure from one region to another. After
the copy, they cease to use the data in the old region so
it may safely be deallocated. Dan Wang and Andrew Appel
[33] have exploited similar ideas to write a complete copy-
ing garbage collector in a type safe language that uses the
regions.

Although copying is highly effective solution in many sit-
uations, it is not without its own overhead. If the container
data structure is large, the extra space and time required to
copy the live data from one region to another may not be
acceptable. In our language, programmers have many more
choices. On the one hand, they may employ the copying
solution that we have just discussed. On the other hand,
programmers can mix linear types with regions to solve this
problem in new ways. In particular, programmers can define
heterogeneous data structures. In other words, containers
may hold elements stored in different regions and therefore
individual objects may be deallocated independently of the
other objects in the container.

To demonstrate these ideas, we introduce a type for lists:

¢
T list at p. Like other data structures such as pairs and
closures, intuitionistic lists are constrained so that they do
not contain linear objects.

®
There are three lists expressions. The expression []_at e
introduces an empty list with type 7 in the region designated
by e. The expression co%s(el, e2) at es prepends e: to the
list ez, in the region designated by es. The case construct
case e; of [| = ez | (z,y) = es follows the first branch if e;
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Figure 9: Well-Formed List Constructs

is the empty list and the second branch otherwise. Figure 9
presents the well-formedness rules for list expressions.
These typing rules (in particular, the rule for cons) require
that the spine of the list inhabits a single region.However,
the elements of the list may inhabit different regions. For
example, a linear list of lists might be given the following

type:

. 1
3p.rgn(p) x (() list at p) list

In this case, each element of the list is an existential pack-
age containing a pair of a reference to a region and a list
inhabiting that region. Each of these inner lists may be
processed and deallocated independently of any of the other
inner lists. However, since the regions are linear they can
not alias one other. If a programmer requires a data struc-
ture that involves aliasing between the lists then a reference
counting solution could be used:

. 1
Ep.rgn(p) x (() list at p) list

6. RELATED AND FUTURE WORK

This paper draws together two different branches of type
theory designed for managing computer resources. Research
on linear types originated with Girard’s linear logic [11] and
Reynolds’ syntactic control of interference [24]. Linear type
systems were later studied by many researchers [19, 30, 1, 3,
6, 29, 34, 15]. Type and effect systems were introduced by
Gifford and Lucassen [10] and they too have been explored
by many others [17, 26, 28, 21].

More recently, a number of new linear type systems, or
more generally, “substructural type theories,” have been
developed such as Kobayashi’s quasi-linear types [18], Po-
lakow and Pfenning’s ordered type theory [22, 23]. There is
also renewed interest in developing new logics that facilitate
Hoare-style reasoning about heap-allocated data structures.
Reynolds [25] and Ishtiaq and O’Hearn [16] have developed
substructural logics for just this purpose. An interesting line
of research is to investigate how these other systems for alias
control interact with region-based memory management.

There are close connections between this work and Walker,
Crary and Morrisett’s capability calculus [31]. The capa-
bility calculus used a notion of linearity to control region
aliasing. Our current work has the advantage of being more
expressive in a number of ways (it accommodates first-class
regions, heterogeneous data structures and reference count-
ing). However, the bounded quantifiers of the capability
calculus make it possible to write continuation-passing pro-
grams that we cannot write with the lexically-scoped let!
operator (see [31] for a detailed explanation). It seems likely
that there is a way to combine the two approaches.

Makholm, Niss and Henglein [14] have had similar in-
sights with respect to reference-counted regions as we have
and are developing successful type inference techniques for
a language with (second-class) reference-counted regions.
Gay and Aiken [8, 9] have developed run-time libraries and
language support for reference-counted regions in C. Their
reference-counting scheme is somewhat different than the
one we have introduced here as they count the number of
pointers that cross region boundaries rather than the num-
ber of pointers to the region data structure itself. Dealloca-
tion is allowed when there are no more pointers to values in
a particular region and safety is checked mainly at run time.

DeLine and Fahndrich [7] are developing a new type-safe
variant of C called Vault. They use a form of the capabilities
mentioned above to control access to all sorts of program re-
sources including memory regions. They have also developed
effective local type inference techniques and have experience
using their type system to enforce safety properties in device
drivers. Currently, Vault tracks linear resources only and it
might benefit from our let! operation to temporarily make
linear resources intuitionistic.

Dan Grossman, Trevor Jim and Greg Morrisett are cur-
rently developing a second type-safe variant of C, called Cy-
clone. Currently, Cyclone relies upon a conservative garbage
collector. However, together with Grossman et al., we are
exploring ways to incorporate some of the ideas described
here into Cyclone.
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