Self-Customized BSP Trees for Collision Detection®*

SIGAL AR' BERNARD CHAZELLE? AYELLET TAL$

Abstract

The ability to perform efficient collision detection is essential in virtual reality environ-
ments and their applications, such as walkthroughs. In this paper we re-explore a classical
structure used for collision detection — the binary space partitioning tree. Unlike the com-
mon approach, which attributes equal likelihood to each possible query, we assume events
that happened in the past are more likely to happen again in the future. This leads us to
the definition of self-customized data structures. We report encouraging results obtained
while experimenting with this concept in the context of self-customized BSP trees.

Keywords: Collision detection, binary space partitioning, self-customization.

1 Introduction

Virtual reality refers to the use of computer graphics to simulate physical worlds or to generate
synthetic ones, where a user is to feel immersed in the environment to the extent that the user
feels as if “objects” seen are really there. For example, “objects” should move according to
force exerted by the user and they should not go through each other. To achieve this feeling of
presence, one must address many issues, a key one among them is that of collision detection,
which is fundamental in many other applications as well (e.g. [8, 4, 14]).

A large variety of data structures have been proposed for use in collision detection algo-
rithms, with the goal of speeding up query processing and response time. They include, among
others, simple grid hashing, k-d trees, BSP trees [20], the Dobkin-Kirkpatrick hierarchy[10],
R-tree and its variants (e.g. [23, 25, 24]), the OBBtrees [13] and the Boxtrees [4]. In this pa-
per, we return to explore the binary space partitioning — BSP — trees, a classical data structure
used for collision detection.

Classical search trees, and BSP trees among them, have been extensively analyzed under
worst-case and average-case models. The latter usually assume that keys are drawn randomly
from a standard distribution (eg, uniform). Persuasive arguments have been made that such
models are often realistic in practice. Three-dimensional geometry, however, paints a less
pleasing picture. How does one justify a choice of distribution for a random 3D scene, a
random navigation path in a walkthrough system, a random ray-shooting query in a BSP tree?

*The second author’s work was supported in part by NSF Grant CCR-96-23768, ARO Grant DA AH04-96-1-
0181, NSF Grant CCR-97-31535, and NEC Research Institute. The third author is a Milton & Lillian Edwards
academic lecturer.

tDepartment of Electrical Engineering, Technion - Israel Institute of Technology

iDepartment of Computer Science, Princeton University and NEC Research Institute

$Department of Electrical Engineering, Technion - Israel Institute of Technology

Even the simplest distributions (such as uniform among order types or input coordinates)
are difficult to analyze and their practical relevance can be highly questionable.! People rarely
navigate through a building by performing random walks and bouncing against walls aimlessly.
Visibility or collision queries are typically dependent on previous ones, and we might be able
to coax more predictive power from, say, a hidden Markov model [22] than we might from any
closed-form distribution. But even there the geometry alone would be insufficient to specify
the states and their transition probabilities. Exogenous factors can be just as important.
Think how Mona Lisa’s whereabouts might affect the walkthrough pattern in Le Louvre or
how the showing of Titanic in a shopping mall might alter teenage crowd traffic. One might
be able to use the geometry as conditioning data to produce relevant a posteriori information
through some Bayesian model (eg, network beliefs [16, 21]). This would be one step towards
injecting semantics into the model, which in the case of 3D environments is — we believe —
often essential.

But even if we were to agree on a stationary client request distribution, how would we
accommodate changes in client usage? More to the point, how would we use information
about expected costs to optimize the data structure in real time (which is, after all, the whole
purpose of the exercise)? Last but not least, how would we keep such a system simple and
fast enough to be useful in practice?

In this paper we do not address the investigation of predictive models per se. Rather,
we focus on the link between model acquisition and data structure optimization. We adopt
a minimalist approach that avoids any a priori assumptions on client usage. This leads us
to the concept of a self-customized data structure, which we briefly discuss below in full
generality. For most of this paper, however, we use the BSP tree as a case-study to experiment
with the idea of self-customization. The binary space partitioning tree [12], which generalizes
kd-trees and oct-trees, is particular relevant to visibility computation, collision detection,
and walkthrough systems [29]. It is also versatile enough to remain useful under various
simplifying design assumptions. In other words, it is a good vehicle for experimenting with
the self-customized concept in a relevant, flexible environment.

SELF-CUSTOMIZING

Caching and prefetching are simple, powerful ideas in computer systems which can be
found, under more complex guises, in a variety of data structures as well, such as buffer
trees, splay trees, and other self-adjusting structures [2, 26]. All share the same basic traits,
notably the assumption that events are more likely to happen in the future if they have already
happened in the past. Self-customizing is premised on this temporal coherence principle alone.
It is this minimalist approach that makes it particularly attractive. Just as spatial coherence
is essential to fast rendering, temporal coherence has proven useful for collision and visibility,
eg, [1, 8]. The main difference in our approach is that of scale. Our assumption is not that
of “micro-coherence” (a fancy way of saying that functions should be piecewise smooth), but
of coherence over longer periods of time. In our model, request distributions can be arbitrary
and they can change over time arbitrarily. Changes, however, should be sufficiently spread
apart to allow for effective statistical parameter estimation.

The idea behind a self-customized data structure is to hypothesize a probabilistic distri-
bution of requests based on a log of recent client usage. That information is then used to
reconfigure the data structure to improve performance. A self-customized data structure in

!Not always, of course. Classical point process analysis has been successful in astronomy and chemistry [5,
18].

action runs two concurrent processes:

e Learning: The system keeps a properly sampled log of the client’s past requests and
infers from it a probability distribution over the request domain. The distribution is
periodically updated to reflect changing patterns in the log.

e Reconfiguring: At recurring intervals, the system updates the data structure — possibly
rebuilding it from scratch — to optimize its expected request-answering complexity.

Both learning and reconfiguring activities must dovetail with client use, so as not to pre-
empt access to the data structure at any time. Overhead should be kept minimal as a fraction
of the overall request-answering costs. In other words, from the client’s point of view, self-
customizing should be a transparent, latency-free feature of the data structure.

BINARY SPACE PARTITIONING

Given a set S of disjoint polygons in R3, a BSP tree is a binary tree, where each node v is
associated with a plane 7, and a closed convex polyhedron C,,. The root’s polyhedron is a large
box enclosing the scene S. If v is not a leaf, the plane 7, cuts C,, into the two convex regions
associated with the children of v. Traditionally, leaves v are characterized by the fact that
no polygon of § should intersect the interior of C,. We may relax this assumption, however,
to save storage and add flexibility to the structure. The polygons of S are referred to as
scene polygons. In practice, large ones should be triangulated and split into their constituent
triangles.

Obviously, constructing a BSP tree is a highly nondeterministic process, which begs the
question: what is a good construction for a given S? BSP tree sizes can vary widely from
linear to cubic. It is known that random constructions can limit the size to quadratic [20]
and, it seems, much less in practice [6]. For this reason, our experiments focus on the other
cost of a BSP tree, ie, the time for answering a ray-shooting query. To limit the scope of
our investigation we restrict ourselves to auto-partitioning BSP trees: these are obtained by
requiring each plane 7, to contain a scene polygon.

Given a ray specified by a point p and a direction £, we can find the first polygon of S that
it hits by recursing on the following process. Assume that the ray is known to cross C,. If v
is a leaf, then compute the answer by exhaustive examination of all the scene polygons that
intersect Cy; otherwise, find whether the ray hits a scene polygon associated with node v. If it
does, we have collision detection. (To find the front-most collision, recurse in the single child
w of v whose polyhedron C,, lies on the same side of 7, as p.) If there is no collision in v,
recurse in both its children.

2 Ray Distribution Learning

Given a training set 7 of m rays, there are several choices for inferred distributions D. Variants
of standard methods [9, 11, 15, 22, 31] can be used. Our first choice derives from non-
parametric maximum likelihood estimation: D is the discrete uniform distribution over the
m rays. It is simple — one might even say simplistic — but because distributions are to be
used solely for collecting order statistics (not for sampling per se), it seems quite effective
nevertheless.

For our other choices, we limit ourselves to translation-invariant distributions, which there-
fore can be fully defined over the sphere S2. This is well justified in the context of, say, visibility

computations with a light source at infinity [3]. To generalize our experiments to arbitrary
5-dimensional rays is straightforward but more costly.

2.1 Multivariate-Gaussian

Assuming that the training points of 7 are represented by their (z,y, z) coordinates, we form
the covariance matrix ¥ = AT A, where A is the m x 3 matrix of points. Let (u,v,w) be an
orthonormal eigenbasis for 3, and o, 0,, 0, be the corresponding eigenvalues. The inferred
distribution can be sampled by the following simple procedure:

1. Draw random U (resp. V, W) independently from the normal distribution with mean 0
and variance oy, (resp. oy, 0y).

2. Choose as sample point of S? the point whose (u, v, w)-coordinates are
(U, V,W)/VU? + V2 + W2

Suppose that the training set is uniformly distributed on S?. Then, all eigenvalues are
equal and the density function for (U, V, W) is proportional to

6U2/2au +V2/20,+W2 /204
7

which is spherically invariant. So, we end up sampling the unit sphere uniformly. Different
eigenvalues produce a uniform sampling of the ellipsoid of inertia. From an implementation
point of view, note that there is no need to diagonalize the covariance matrix 3: we can sample
(z,y, z) from the unbiased normal distribution

1

S ef % (wayaz)zil(wayaz)T.
2n)7|dets]

f(z,y,2) =
and bring the sample point to $? by scaling. The strength of this method is its simplicity
and robustness. Its weakness is to smooth out impulse distributions. In particular, it infers
the uniform distribution from the one concentrated equally around three mutually orthogonal
peaks. To avoid these problems we experiment with two variants of more sophisticated data
analysis methods.

2.2 Cluster-Based Learning

We change our representation of 7 and now assume that points of S? are specified by their
Euler coordinates (#,¢), where —m/2 < 0 < w/2 is the latitude and 0 < ¢ < 27 is the
longitude angle. Because ¢ is mod 27, clusters might end up being split into two parts. There
are several ways to go around this problem, such as making several copies of the Euler square:
we choose the simpler approach of randomly rotating the coordinate system to decrease the
likelihood of cluster splitting. Another, more serious, problem is distortion: to fix it, any
further reference to area is to be understood in the spherical metric (with density cos 6 d0dy).

k-MEANS CLUSTERING

Choose some parameter k (the number of clusters), and pick k¥ random samples of size /n
in 7. Form the centroid (ie, mean point) of each sample; let C' denote the set of k centroids.
Iterate on the following process:

1. Compute the Voronoi diagram of C.

2. For each Voronoi cell, compute the centroid of the training points in it, and let C’ denote
the set of k£ centroids.

3. If C is sufficiently different from C’, set C < C' and go back to 1.

The distribution is obtained by assigning a density to each Voronoi cell of the final C' by
dividing the number of points in the cell by its (spherical) area and sampling accordingly.

The clustering is fairly sensitive to outliers and does not respond too well to overlapping
clusters (although typically adding some amount of fuzzy clustering [15] can help). A more
sophisticated approach is to integrate clustering with distribution inference through Gaussian
mixture.

GAUSSIAN MIXTURE

Again, let k denote the number of clusters. We postulate that the distribution D is a
weighted sum of k bivariate Gaussians. We estimate their means and covariances by the EM
algorithm [9, 22]; it is a probabilistic version of k-means clustering. We seek a conditional
probability function of the form

prob(z|II) = Z wip(z|pi, £5),
1<i<k

where (i) IT denotes the parameter vector ({wj,p;,%; : 1 < i < k}), (ii) w; is the prior
probability that the ith Gaussian was picked; (iii) y; is the mean of the Gaussian for the i-th
class, (iv) X; is its covariance matrix, and (v) p(z|ui, X;) denotes the probability density that
z is a point drawn from the Gaussian with mean u; and covariance matrix ;. By definition,
sy 1 L) T
p($|l$z,zz) —me 2() ()

The Expectation and Maximization stages of the EM algorithm are combined into one
with the recurrence formula below. Initially, the parameter vector Il is given the assignment
corresponding to uniform weights (w; = 1/k) and p; derived from the i-th class centroid derived
from k-means clustering. All covariance matrices are set as ol (where I is the 2 x 2 identity
matrix) for small o. After stage ¢, we compute the next assignment II; for the parameter
vector by using the recurrence formula:

(., — 1 m .

w; = g j:lp(z‘xjant—l)
¢ 2y @plizgdlea)

¢ M S, pliles 1)

Doy PGl) (g —pf) (g —)™
(7’ Z;nzlp(i‘zj’ntfl) .

The notation p(i|z;,II;_1) refers to the posterior probability that the i-th Gaussian was
chosen, given the observation z; and the belief that it was drawn from a Gaussian mixture
with parameter vector II;_1; superscripts indicate stage index. The analogy with k-means
clustering is easy to grasp. The mean y; of the i-th Gaussian is moved to the centroid of the
data points, with each z; weighted in proportion to p(i|z;,II;_1). By Bayes’ rule, we have

p(i|Tl_1)p(z;|i, ;1) _ p(i|Tl_1)p(z i, ;1)
p(z|Tle-1) Yo p(TIL_1)p(x;|€, ;1)
wt e 3 @i—u ST @

Sewh ! e 3@i—ny)T () " @i—mg)

plilzj, 1) =

3 Tree Configuration

Dynamic updating of BSP trees has been extensively studied [1, 7, 27, 30], and there is no
need here for detailed discussion of the primitive geometric operations involved. Given a node
v of a BSP tree for S, let P, be the convex polygon formed by the intersection of the cutting
plane m, with the convex polyhedron C,. The traversal cost of a directed line in a BSP tree
is the number of nodes that are “opened” before the first collision (with a scene polygon) is
found. This is at most proportional to the height of the tree added to the number of polygons
P, that the line intersects. We ignore the first term since it is the same for all queries and
since the second one is typically dominant. (Because rays do not extend past scene polygons,
this number overcounts the actual cost: this is not a problem as long as the overcounting is
roughly the same for most directed lines.)

Our experimentation reveals that the following measures have a direct influence on the
traversal cost, and therefore on the “goodness” of a plane as a candidate cutting plane. One
key parameter is the projected surface area of a scene polygon along the viewing direction.
More specifically,

e The angles at which the rays hit the plane. For a given ray and plane, the closer this
angle is to 90°, the more likely the ray is to hit a scene polygon embedded in that plane.

e The total surface area of the scene polygons that are embedded in the candidate cutting
plane, relative to the total scene area. The more surface area the plane “covers”, the
more likely it is that corresponding scene polygons are hit by rays aimed at the scene.

e The position of the plane relative to the source point(s) of the rays and relative to the
other planes of the scene. Rays are blocked from planes that are behind other planes,
relative to their source point.

e The surface area of the P,’s (the intersection of cutting plane with the convex polyhedra
associated with the nodes). Rays aimed at the general direction of the node are more
likely to hit a polygon with a bigger surface area.

Let w(£) be the density measure of the ray distribution D. We solve the corresponding
optimization problem by following a randomized greedy strategy. We build the BSP tree
incrementally by inserting planes one at a time. At any time during the construction, we keep
a list L of the scene planes (ie, the planes coplanar with polygons of §) that are potential
cutting planes, and we maintain the score of each scene plane 7, defined as

score(r) = /Z weight(S, . £) w(¥) dt (1)

for some weight function measuring the desirability of a cutting plane.

The scoring can be done in one of two modes. In the prescoring mode, each potential plane
is given a score once, before we begin building the BSP tree. These scores are used throughout
the tree construction. In the incremental scoring mode, we recalculate a plane’s score each
time it is a candidate cutting plane.

3.1 Prescoring Mode

In the prescoring mode, we start by calculating score(w) for each plane 7w defined by a scene
polygon. Let (7,¢) denote the angle between ¢ and and the normal to plane 7. Let area(S)
be the total area of all scene polygons, and let area(S N 7) be the area of scene polygons on
the plane m. We experimented with several weight functions. The one that proved best in

practice was
5 area(SNm)

area(S) @

This corroborates the intuitive belief that favoring scene polygon hits high up in the tree limits
the branching factor in answering a query and therefore lowers costs. Let L, denote the set
of scene planes crossing C,. To select the cutting plane m, for a current leaf v that we wish
to split, we choose among L, as follows:

weight(S, m,£) = (1 — cos(7, £))

e Sort the planes m € L, by score(r).
e Randomly choose one plane among the highest-scoring planes.

Note that the above score function aims to hit near the root of the BSP tree. Other score
functions can be used. For instance, if one wants to optimize for rays aimed at the general
direction of the scene, but missing its polygons, the weight function can be altered accordingly
without difficulty.

3.2 Incremental Mode

A more complex measure of costs includes the actual P,’s and requires on-line weight updates.
By translation invariance, the probability that a directed line of direction ¢ intersects the
polygon P, is proportional to area (P,)|cos(7y,£)|, so the “cost” of P, is represented by

/area (Py)| cos(y, £)| dw(£). (3)

Note that in the case of a uniform distribution we find the cost is proportional to the sum of
the areas, which agrees with previous observations [3, 4]. At any time during the construction,
we keep a list L, of the scene planes crossing C,, for each current leaf v. We redefine the
weight function to be recalculated at each selection step, and the score of each scene plane 7
is now defined as

score(m) = Z /area (Cy N)| cos(7, £)| dw(¥).
V:ITELy
Our plane selection strategy is to draw a random scene plane (among those remaining
to be inserted) from the distribution induced by the score function. This time, we seek to
minimize the score function in order to limit the area of the non-scene polygons (weighted by
the ray distribution). We define the probability of picking a plane 7y at stage k to be

1
score(mo) Y. 1/score(rm)

For technical reasons it is preferable to threshold the tail of the distribution and renormalize it,
so that each probability remains within [0,1]N[e/(n —k),1/e(n — k)], for some small constant
e>0.

The randomization in our strategy serves two purposes. One is to avoid falling into narrow
local minima. The other is to avoid a storage blowup.

4 Experimental Results

Variants of the algorithms involved in our classification and BSP tree constructions were imple-
mented in C on a Silicon Graphics workstation. To guide our search for good weight functions,
and to visualize the results, we used the geometric animation system GASP [28]. In Figure 1
we show some common objects that were used as our scenes.

To simulate the learning process, we produced training data, assuming a multivariate
normal distribution. Then, to benchmark the performance of a given BSP tree, we produced
collision queries using distribution parameters similar to those used for the training data.

We compared BSP trees produced using our scoring mechanism to some highly optimized
BSP trees that have been discussed in the literature. In particular, we compared our cus-
tomized BSP trees in the prescoring mode to what we shall call the standard BSP trees of the
Graphics Gems [19], where the main concern is to minimize the number of intersections of
cutting planes. For the sake of meaningful comparisons, apart from the choice of the cutting
planes, we applied to the standard BSP the same optimizations we used on our customized
BSP code.

Table 1 below presents the results of our experiments. Next to each object, we indicate the
number of faces comprising it. For each scene, we ran the Standard BSP building code and our
new Customized BSP building code. They were compared under several configurations. We
varied the number of rays and the number of clusters in which they fall. (Both training data
and queries were allowed to vary, not always in the same way.) To compare the performance, we
counted the number of BSP tree nodes opened (for all the rays) in each case - the Customized
BSP vs. the Standard BSP .

Our experiments indicate that self-customized BSP trees can offer stunning speedup factors.
For instance, when one cluster of 1000 rays was aimed at the back end of the transporter, the
Standard BsSP opened 135,663 BSP tree nodes, while our Customized BSP opened only 1000
nodes. As another example, when four clusters of 1500 rays (total) were aimed at the side of
the wheel, some hitting the spokes and some hitting the tire, the Standard BSP opened 30,085
nodes, while the Customized BSP opened 8771. Our advantage comes from the training data,
that suggests picking the first BSP cutting plane as the one that the rays are actually expected
to hit first.

Two related factors we did not attempt to optimize in the actual experimentation with cus-
tomized BSP trees are the tree size and the tree construction time. The customized BSP trees
have, on average, twice as many nodes as the standard BsP trees. Even so, when the cus-
tomized BSP trees are optimized to favor hitting rays, they perform much better. As for the
preprocessing, the construction time for the customized trees is much smaller than that needed
for the corresponding standard BSP trees. This is because calculating intersections takes much
longer than calculating our scores, regardless of relative tree sizes.

A Sphere (556 faces)

No. of Rays | No. of Clusters | Standard Bsp | Self-Customized BsP
100 1 15,055 3,008
200 4 38,807 5,293
1,000 4 189,804 24,073
A Wheel (972 faces)
No. of Rays | No. of Clusters | Standard Bsp | Self-Customized BSP
100 1 2,617 1,803
150 2 3,637 2,870
300 1 7,200 300
1,500 4 30,085 8,771
A Transporter (3,952 faces)
No. of Rays | No. of Clusters | Standard Bsp | Self-Customized BsP
100 2 16,156 1,251
1,000 1 135,663 1,000
1,000 3 161,206 11,114
The St. Pauls Cathedral (3,865 faces)
No. of Rays | No. of Clusters | Standard Bsp | Self-Customized BSP
100 1 1,816 580
300 3 7,598 2,061
800 2 18,584 8,362
A Robot (2,294 faces)
No. of Rays | No. of Clusters | Standard Bsp | Self-Customized BsP
750 2 19,879 14,407
1,000 1 7,232 1,483
1,000 3 30,876 14,293
A Shuttle (558 faces)
No. of Rays | No. of Clusters | Standard Bsp | Self-Customized BSP
100 1 4,906 1,944
750 2 44,235 28,680
1,200 3 51,667 26,858
A Human Head (1,850 faces)
No. of Rays | No. of Clusters | Standard Bsp | Self-Customized BsP
100 1 6,348 1,318
900 3 53,890 14,434
1,200 5 70,024 18,902
Table 1: Comparison of the number of nodes opened

5 Conclusions

We introduced the concept of self-customized data structures, and investigated it in the case
of BSP trees for collision detection. Self-customizing requires two steps: (i) learning from a
sample of client requests to infer a distribution over the request domain; (ii) (re)configuring
the data structure to optimize its expected request answering costs.

We discussed various ways to infer the distribution parameters. We also showed how to
devise, from a distribution and from some information about the scene, a scoring mechanism
for scene planes.

To benchmark the performance of self-customized BSP trees on collision detection queries,
we compared the query answering costs of the customized BSP trees to those of some public
domain BSP trees.

On the basis of our experimental results, it is clear that self-customizing can greatly im-
prove performance of query response time. Moreover, if the self-customized data structure
is optimized with respect to the inferred distribution, then its size becomes insignificant to
query response time.

We believe self-customization is worthy of further investigation. Potential other domains
can include point location and range searching. In addition, we intend to investigate the
combination of deferred data structuring [17] with self-customization.

References

[1] Agarwal, P.K., Guibas, L.J., Murali, T.M., Vitter, J.S. Cylindrical static and kinetic binary
space partitions, Proc. 13th Annu. Symp. Comput. Geom. (1997), 39-48.

[2] Arge, L. The buffer tree: a new technique for optimal I/O-algorithms, in “Algorithms and
Data Structures,” eds. Akl, S.G., Dehne, F., Sack J.-R., Santoro, N., Springer (1995),
334-345.

[3] Aronov, B., Fortune, S. Average-case ray shooting and minimum weight triangulations,
Proc. 13th Annu. ACM Symp. Comput. Geom. (1997), 203-211.

[4] Barequet, G., Chazelle, B., Guibas, L.J., Mitchell, J., Tal, A. BOXTREE: a hierarchical
representation for surfaces in 3D, Graphics Forum, 15 (1996), C-387-396.

[5] Bartlett, M.S. The Statistical Analysis of Spatial Pattern, Chapman and Hall, London,
1975.

[6] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O. Computational Geometry:
Algorithms and Applications, Springer, 1997.

[7] Chrysanthou, Y., and Slater, M., Computing dynamic changes to BSP trees, Computer
Graphics Forum (EUROGRAPHICS ’92 Proceedings), 11 (1992), 321-332.

[8] Cohen, J., Lin, M., Manocha, D., Ponamgi, K. I-COLLIDE: an interactive and ezact
collision detection system for large-scaled environments, Proc. ACM Int. 3D Graphics
Conf. (1995), 189-196.

[9] Dempster, A., Laird, N., Rubin, D. Mazimum likelihood from incomplete data via the EM
algorithm, J. Royal Statistical Society, B 39 (1977), 1-38.

[10] D.P. Dobkin and D.G. Kirkpatrick, Fast detection of polyhedral intersection, Theoret.
Comput. Sci., 27 pp. 241-253 (1983).

10

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

Duda, R.M., Hart, P.E. Pattern Classification and Scene Analysis, Wiley, 1973.

Fuchs, H., Kedem, Z.M., Naylor, B. On wvisible surface generation by a priori tree struc-
tures, Proc. SIGGRAPH ’80, Comput. Graph., 14 (1980), 124-133.

Gottschalk S., Lin, M.C., and Manocha, D. OBBTree: A Hierarchical Structure for Rapid
Interference Detection, Proc. SIGGRAPH 96, 171-180.

M. Held, J.T. Klosowski, and J.S.B. Mitchell, Fvaluation of collision detection methods
for virtual reality fly-throughs, Proc. 7th Canadian Conf. Computational Geometry, pp.
205-210 (1995).

Jain, A.K., Dubes, R.C. Algorithms for Clustering Data, Prentice Hall, 1988.
Jensen, F. An Introduction to Bayesian Networks, Springer, 1996.

Karp R.M., Motwani R. and Raghavan P. Deferred Data structuring, STAM Journal on
Computing, 17 (1988), pp. 883-902

Okabe, A., Boots, B. and Sugihara, K. Spatial Tesselations, Wiley, New York, 1992.
Paeth A.-W. Graphics Gems V, Academic Press, 1995.

Paterson, M.S., Yao, F.F. Efficient binary space partitions for hidden-surface removal and
solid modeling, Disc. Comput. Geom., 5 (1990), 485-503.

Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann, 1988.

Rabiner, L., Juang, B.H. Fundamentals of Speech Recognition, Prentice-Hall Signal Pro-
cessing Series, 1993.

N. Roussopoulos and D. Leifker, Direct spatial search on pictorial databases using packed
R-trees, Proc. ACM SIGACT-SIGMOD Conf. Principles Database Systems, pp. 17-31
(1985).

H. Samet, Spatial Data Structures: Quadtrees, Octrees, and Other Hierarchical Methods,
Addison-Wesley, Redding, Mass., 1989.

T. Sellis, N. Roussopoulos, and C. Faloutsos, The Rt -tree: A dynamic index for multidi-
mensional objects, Proc. 13th VLDB Conf., pp. 507-518 (1987).

Sleator, D.S. and Tarjan, R.E. Self-adjusting heaps, SIAM J. Comput. 15 (1986).

Sung, K., Shirley, P. Ray tracing with the BSP tree, ed. David Kirk, Graphics Gems III,
Academic Press Inc. (1992), 271-274.

Tal, A. and Dobkin, D. P. Visualization of geometric algorithms, IEEE Trans. on Visual-
ization and Computer Graphics, 1 (1995), 194-204.

Teller, S.J., Sequin, C.H. Visibility preprocessing for interactive walkthroughs, Proc. SIG-
GRAPH ’91, Comput. Graph., 25 (1991), 61-69.

Torres, E. Optimization of the binary space partition algorithm (BSP) for the visualization
of dynamic scenes, EUROGRAPHICS 90, Eurographics Association (1990), 507-518.

Upton G., Fingleton B., Spatial Data Analysis by Examples, Wiley 1985.

11

(a) A Sphere (b) A Wheel (c) A Transporter

(d) A Robot (e) A Shuttle (f) A Human Head

(g) The St. Paul’s Cathedral

Figure 1: The objects used

12

