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Abstract. This paper is concerned with the problem of partitioning a three-
dimensional nonconvex polytope into a small number of elementary convex parts.
The need for such decompositions arises in tool design, computer-aided manufac-
turing, finite-element methods, and robotics. Our main result is an algorithm for
decomposing a nonconvex polytope of zero genus with n vertices and r reflex edges
into O(n + r?) tetrahedra. This bound is asymptotically tight in the worst case. The
algorithm requires O(n + r*) space and runs in O((n + r?) log r) time.

1. Introduction

This work is concerned with the problem of partitioning a polytope in R? into a
small number of elementary convex parts. The general problem of decomposing an
object into simpler components has been the focus of much attention in recent
years. In two dimensions, computer graphics and pattern recognition have been the
main source of motivation for this work. Beginning with the papers of Feng and
Pavlidis [15] and Schachter [26], the problem of rewriting a simple polygon as a
collection of simple parts has been exhaustively researched; see O’Rourke’s book
[22] and the survey article by Chazelle [8]. In higher dimensions, however, results
have been few and far between. It is known from [7] that a polytope of n vertices
can always be partitioned into O(n*) convex pieces, provided that Steiner points
are allowed in the decomposition, and that this bound is tight in the worst case.
Ruppert and Seidel [25] proved recently that if no Steiner points are allowed, the
problem of deciding whether a given polytope is decomposable into tetrahedra
(whose vertices have to be vertices of the polytope) is NP-complete, even if
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restricted to the class of star-shaped polytopes. The algorithm to carry out the
partitioning described in [7] is based on the exact RAM model of computation.
The issue of robustness while dealing with finite precision arithmetic is considered
in [2], where a numerically robust algorithm to compute a convex decomposition
of nonconvex polytopes of arbitrary genus is presented.

On a related problem, Aronov and Sharir [ 17 have shown that the cells
of an arrangement of n triangles in 3-space can be partitioned into a total of
O(n*a(n) + h) tetrahedra, where h is the number of faces in the arrangement, and
a(n) is the inverse Ackermann function. For fixed arbitrary dimension d, Edels-
brunner et al. [14] have given an optimal algorithm for computing the partition
of d-space induced by a collection of hyperplanes. The stratification and triangula-
tion of real-algebraic varieties and related issues are discussed in (61,91, [11],[24],
[27] and [29].

The specific problem of partitioning a three-dimensional polytope into simple
parts arises in mesh generation for finite-element methods, computer-aided design
and manufacturing, and automated assembly systems and robotics (31, [16], [28].
The problem comes under various guises, depending on the desired shape of
partitioning elements: convex, simplicial, star-shaped, monotone, rectangular,
isothetic, etc. In general, the quest for minimal partitions seems destined to be
frustrated. For example, finding minimum convex decompositions is NP-hard
[19]. In practice, however, good approximation algorithms may be just as
attractive, especially if they are fast and robust and the decompositions produced
are free of pathological features. Indeed, a minimum partition can sometimes be so
contrived that a finer, yet more regular, decomposition is preferable.

How difficult is it to triangulate a polytope (that is, subdivide it into a collection
of tetrahedra)? In practice, a “good” triangulation algorithm should not only
guarantee O(n?) pieces in the worst case, but it should also make the size of the
triangulation dependent on both n, the size of the polytope, and r, the number of
reflex edges. The polytopes arising in standard application areas tend to be almost
convex, and this fact should be used to one’s advantage. For example, a
triangulation of quadratic size would be disastrous if, say, the polytope is convex.
When both n and r are taken into account, the lower bound on the triangulation
size becomes Q(n + r?) (as is easily derived from [7]). By this criterion, the
algorithm described in this paper is optimal: A polytope of n vertices and r reflex
edges is triangulated into O(n + r?) pieces. The running time is O((n + r?) log r).
We believe that the algorithm is practical. An implementation is under way, and
the plan is to test it on actual problems arising in the use of finite-element methods
in aerospace engineering.

The triangulation algorithm consists of two parts. In the pull-off phase the size of
the polytope is reduced to O(r). To achieve this we identify vertices of small degree
that are not hindered by other vertices and remove them one by one, much like we
would pull a ski hat off someone’s head. Next, we enter the Jence-off phase, which
involves erecting vertical fences from each edge of the polytope. In Section 2 we set
our notation and move a number of technicalities out of the way. Section 3
describes the triangulation algorithm proper.
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2. Cups, Crowns, Domes, and Other Widgets

We begin by recalling some standard terminology and introducing some of our
own. In R a polytope is a piecewise-linear 3-manifold with boundary, which is
homeomorphic to a closed k-holed torus for arbitrary k. Its boundary consists of a
collection of relatively open sets, the faces of the polytope, which are called vertices,
edges, or facets, if their affine closures have dimension 0, 1, or 2, respectively.
A polytope is simple if no two faces share a point. Note that, for each point p
on the boundary of a simple polytope, there exists a ball B, centered at p, which
intersects only the facets that contain p in their closure. We define a simple
polytope Q to be nondegenerate if the boundary of Q divides the ball B, (defined
as above) centered at a point p on Q’s boundary in exactly two nonempty regions,
one in Q’s interior and the other in Q’s complement (Fig. 1). The class of polytopes
with which we deal in this paper is the class of nondegenerate simple polytopes
of genus 0; thus self-intersecting, dangling, or abutting faces, as well as handles,
are ruled out.

Let P be a nondegenerate simple polytope. An edge e of P is said to be reflex
if the (interior) dihedral angle formed by its two incident facets exceeds =.
By extension, we say that a vertex is reflex if it is incident upon at least one reflex
edge, and that it is flat if all its incident facets lie in at most two distinct planes.
Finally, a vertex is pointed if it is neither flat nor reflex (Fig. 2). It is easy to see
that a pointed vertex cannot be incident upon two collinear edges, although it
can be incident upon two coplanar (adjacent) facets of P. As usual, the number
of edges incident upon a vertex is referred to as its degree. Next, we define
the cone of a pointed vertex v as the unbounded convex polyhedron spanned
by the edges incident upon v. More precisely, cone(v) is the locus of points
U4 Y i<k %(w; — v), where wy, ..., w, are the vertices of P adjacent to v and
the o;’s are arbitrary nonnegative reals. We are now ready to introduce the key
notion of a cup. The cone of a pointed vertex v contains a number of vertices of
P distinct from v. Some lie on the boundary of the cone; others may lie strictly
inside. Let H and H™ be the convex hulls of all the vertices of P lying in cone(v)
and cone(v)\ {v}, respectively. We define cup(v) as the simple polytope formed by
the closure of H\H ™.

degeneracy

Fig. 1. A degenerate polytope.
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reflex

Fig. 2. The different types of vertices.

A number of simple properties follow readily from the definition. A cup is the
closure of the difference between the convex hull of a finite point-set 4 L {v} and
the convex hull of A. Since v does not belong to A4, its cup is a simple star-shaped
polytope whose kernel contains v (Fig. 3). Its boundary contains a number of
polygons incident upon v which are glued to the convex hull of A. The gluing
border is a closed simple polygonal curve, called the crown of v, and can be
centrally projected onto a plane so as to appear as the boundary of a convex
polygon. The crown acts as a Jordan curve on the boundary of the cup, which it
separates into one piece on the boundary of the cone and a concave (with respect to
the cup) polyhedral patch, which we call the dome of v. (If a facet of the dome
contains a vertex or an edge of P then it is refined to include these additional
features.) Edges and vertices of the dome that are not in the crown are called
internal. Obviously, the internal edges of the dome are the only edges of the cup
which are reflex (with respect to the cup). To conclude this string of definitions, we-
refer to the pointed vertex v as the apex of the cup of v.

We now investigate the relationship between P and the cup of v. All cup vertices
are vertices of P though, obviously, the same cannot be said of cup edges. A more
interesting observation is that the cup lies inside P. This follows from the fact, to be
proven below, that the facets of the cup that are not in the dome lie on the
boundary 0P of P. Thus, it is impossible for a facet or an edge of P to intersect the
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Fig. 4. A facet of a cup.

interior of the cup, unless a vertex of P does. But that, of course, is ruled out by the
very definition of a cup. This establishes our claim. Let us now prove the premise of
this reasoning, which is that a facet of the cup that is not in the dome lies in oP. It
suffices to show that the crown lies entirely in OP. Let g4, ..., g, be the facets of P
incident upon v and let us (mentally) merge any pair of coplanar facets. This
produces superfacets f,, ..., f; (given in either circular order around v), such that
the dihedral angle between two adjacent f;’s is strictly less than n. Now, for each
i=1,...,klet H,(resp. H;") be the two-dimensional convex hull of the vertices of
P lying in f; (resp. f\{v}). The closure of H\H;  is the polygon formed by
intersecting the cup of v with the plane supporting f;: it is the two-dimensional
equivalent of a cup (Fig. 4). Its boundary consists of a two-edge convex chain
followed by a concave chain (possibly reduced to a single edge). By a convex (resp.
concave) chain we mean a piece of a polygon’s boundary which always turns
strictly right (resp. left) when traversed clockwise. The construction works as
desired because v is pointed, and therefore exhibits an angle less than = in f;. The
crown of v is the closed curve obtained by concatenating the concave chains in
sequence. This proves our claim that the crown lies in 6P. In addition, no vertices
but the endpoints of such concave chains can be pointed vertices of P. Therefore,
since all edges of the cup adjacent to the apex are also edges of P, a pointed vertex
can be on the crown of another pointed vertex only if they are adjacent in P. Note,
however, that the converse is not always true. In particular, if two pointed vertices
are connected by an edge which is incident upon two coplanar facets, none of them
lies on the crown of the other.

Let us summarize the various types of faces which a cup may have. The
following statements are to be understood with respect to the cup and not with
respect to P. The edges incident to the apex as well as the edges of the crown are
nonreflex. Actually, none of them can be incident to two coplanar facets. The
reason is that the convex hull operation merges coplanar facets. As a result,
although each facet of the cup incident upon v lies in 4P, it does not necessarily lie
within any given facet of P. Returning to our classification, we should note that the
internal edges of the dome are all refiex.
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We close this section with a few technical lemmas which hold the key to
understanding the whys and wherefores of the pull-off phase. Our goal in the pull-
off phase is to bring the size of the polytope down to proportional to the number of
its reflex edges. The idea is to identify pointed vertices of the polytope, and to
remove them by pulling their cups off. The selection of the pointed vertices to be
removed, however, must be done carefully, if we do not want to increase the genus
of the polytope or compromise its nondegeneracy. We say that a dome is hindered if
it contains (i) an internal vertex, or (ii) an internal edge that is also an edge of P.
The removal of a pointed vertex whose dome is not hindered ensures that neither
the genus of the polytope will change, nor any degeneracies will be introduced.

In the following, we assume that P is a nondegenerate simple polytope of zero
genus with n vertices and m edges, exactly r of which are reflex. We also assume that
P does not have any flat vertices.

Lemma 2.1. Let v and v’ be two distinct nonadjacent pointed vertices of P. No point
can be an internal vertex of the domes of both v and v'. Similarly, no line segment can
be an internal edge of both domes.

Proof.  Let z be a vertex internal to the domes of v and v'. Let us first assume that
the intersection Q of the interiors of the cups of v and v’ is nonempty. The closure of
Q must have at least one vertex outside the dome of v, otherwise it would have
empty interior. The only such vertex can be the apex v, however, since the interior
of a cup is free of vertices. Thus, v lies in the cup of v'. Since it can neither coincide
with v’ nor be an internal vertex of the dome of v', the vertex v must lie on the crown
of v'. But this is not possible, since v and v’ are assumed nonadjacent.

So, we can now assume that the intersection of the interiors of the two cups is
empty. Since z is internal to the dome of v, there exists a small open half-ball
centered at z that lies entirely within the cup of v. A similar statement holds for v’ as
well, and since the two half-balls are nonintersecting, the domes of both v and v,
locally around z, have to lie on the plane separating the two half-balls, which
contradicts the simplicity of P.

This proves the first part of the lemma. The second part is a trivial corollary:
simply introduce an artifical vertex at the midpoint of the internal edge. O

Lemma 2.2. Any reflex vertex of P which is internal to a dome has at least three
reflex edges of P incident upon it.

Proof. Let w be an internal vertex of the dome of some pointed vertex. There
exists a small open half-ball centered at w that lies entirely inside P. Therefore, w is
a vertex of the convex hull of the point-set consisting of w and all its adjacent
vertices in P. Moreover, since P is simple, w will be incident upon at least three
edges of the convex hull. The lemma follows from the observation that the
convex hull edges incident upon w are also edges of the polytope, and are in fact
reflex. O

Lemma 2.3. A reflex vertex of P can contribute internal vertices to at most three
distinct domes.
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Fig. 5. The reflex vertex p hinders the cups of u, v, and w (on the right, the cup of v).

Proof. Figure 5 shows that this bound is tight. Now, suppose,.for contradiction,
that a reflex vertex p is internal to the domes of four pointed vertices u, v, w and z of
P. It follows from Lemma 2.1 that all four apexes must be adjacent to each other,
thus forming a tetrahedron T whose six edges all lie in ¢P. This tetrahedron cannot
have empty interior, otherwise one of the apexes would be either reflex or flat. Note
also that the cup of a pointed vertex s contains any vertex t adjacent to s such that
the (interior) dihedral angle around st is strictly less than z. Therefore, the crown gf
each of u, v, w, z contains the other three apexes as vertices. Furthermore, since p is
an internal vertex of all four domes, and the edges of T are nonreflex, p must liein T.
However, it cannot lie on any of T’s edges, otherwise there would be two
nonadjacent apexes. .

Since p is internal to the domes of all four apexes, there exists a smal'l ball
centered at p that lies entirely in each of their cones. As P is nondegeneratg, this ball
intersects P’s complement, and it contains consequently a point q outside P that
avoids each of the six planes defined by p and any two of the four apexes. Then p
must lie in the interior of one of the four tetrahedra defined by g and any three of
the apexes. All four vertices of that tetrahedron, however, lie in tbe cone of the
fourth apex. Thus, p cannot be a vertex of that apex’s dome, which gives us a
contradiction. O

Lemma 24. Given an edge pq of P, there are at most two pointed vertices u and v,
such that pq is internal to the domes of both u and v, and p and q lie on the crowns of
both domes.

Proof. Suppose that pq is internal to the domes of u, v, and w, and that p and q lie
on all three crowns. Then all six line segments pu, qu, pv, quv, pw, gw lie in 0P, and all
three triangles puq, pvq, pwq lie entirely in P. Furthermore, it follows from Lc?mma
2.1 that u, v, and w are adjacent to each other, and, therefore, each of them lies on
the crowns of the other two, making it impossible for the boundary of each of the
triangles puq, pvq, pwq to contain more than one of u, v, and w. We can thus
establish an ordering of these triangles clockwise around pq; let it be pug-pvq-pwq .

Let us denote by [x, I, y] the dihedral angle that is bounded by the two.half-
planes passing through the line / and containing the points x and y, respectl\fel)",
and is swept when the former half-plane rotates clockwise around ! until it
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Fig. 6. Internal edge pq has its endpoints on the crowns of u and v (on the right, the cup of v).

coincides with the latter one. From the definition of the dome, and the fact that the
edge pq is internal to the dome of u, we conclude that there is a plane S passing
through pq such that u lies in one of the open half-spaces defined by S while v and w
lie either in the other one or on S. Since the same argument applies to v and w as
well, the dihedral angles [, pq, v], [v, pq, w], and [w, pq, u] cannot be larger than 7.
None of them can be equal to = either, however, because of the adjacency of the
apexes.

Therefore, all three dihedral angles [u, pq, v], [v, pq, w], [w, pq, u] are less than .
As a result, the union of the three tetrahedra defined by pg and any two of the
apexes completely contains a small open ball centered at the midpoint of pq. Since
the edge pq is a reflex edge of P, there is a point z outside P that lies in that ball and
avoids all three supporting planes of pug, pvq, and pwq. Then the interior of one of
the triangles uvz, vwz, wuz intersects pq. If this were uvz, then pq cannot possibly be
internal to the dome of w, as the relative interior of uvz lies outside the cup of w.

Note that the statement of the lemma is tight, as shown in Figure 6. O

Summarizing the results of the previous lemmas, we derive:

Lemma 2.5. The polytope P contains at most 2r pointed vertices whose domes are
hindered.

Proof. We partition the reflex edges of P into three classes:

(1) those with at least one endpoint being an internal vertex of some dome,
(2) internal edges of a dome with both endpoints on the crown, and
(3) all remaining reflex edges.

Let us prove by contradiction that classes 1 and 2 are disjoint. Assume that there
exists a reflex edge e of P, internal to the dome of a pointed vertex u, such that one
of its endpoints, say p, lies on the crown of u and is internal to the dome of v. Then
there exists a small open half-ball centered at p that lies entirely in the cup of v, and
hence in P. Since e is internal to the dome of u, it is not collinear with pu. With pu
nonreflex, it follows that the unique plane defined by e and pu intersects the half-
ball in a half-disk centered at p. The internal angle between e and pu is strictly less
than 7 however, therefore the half-disk cannot lie entirely in P: a contradiction. We
conclude that no vertex can be internal to the dome of a pointed vertex and lie on
the crown of another one.
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Let r; (i = 1, 2, 3) be the cardinality of the ith class above. According to Lemma
2.3, an edge in class 1 may hinder at most three domes by contributing internal
vertices through one given endpoint g (so the total might be as high as six). The

.endpoint g, however, will be incident upon at least two additional reflex edges of P

in class 1 (Lemma 2.2). Therefore, the r; edges in class 1 can hinder at most
(2 x 3)/3r, domes. Additionally, from Lemma 2.4, each edge in class 2 may hinder
at most two domes. The lemma foliows readily. The stated bound is in fact
achievable, as shown in Fig. 7. ]

Lemma 2.5 implies that a polytope of n vertices and r reflex edges has at 1§ast
n — 4r pointed vertices whose domes are not hindered. The cups of these vertices
can be removed one by one, and be decomposed into tetrahedra, resulting in a
polytope of at most 4r vertices and a collection of ¥ ; (d; — 2) tetrahedra, where d; is
the degree of the apex of the ith cup removed. The removal, however, must be done
in a systematic way if we want to guarantee that a linear number of tetrahedra are
produced. Let us consider the convex polytope of 2k vertices shown in Fig. 8. Note
that if the cups of the vertices u,, u,_1, ..., u, are removed in that order, the total
number of tetrahedra extracted is (k — 1) If, however, the cups of the same
vertices are removed in the reverse order, we end up with only 2(k —2) + k — 1
tetrahedra. This observation and the fact that the degree of a pointed vertex v of P
is an upper bound on the number of the vertices of crown(v) if the boundary of P 18
triangulated suggest that we should try to remove the cups of the pointed vertices
of small degree first, or even those of degree bounded by some constant d. In an
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implementation of the algorithm this constant may have been set by the program-
mer ahead of time, or be provided by the user. The larger d is, the more vertices will
be_ removed, and, therefore, the more time the pull-off phase will take and the
skmmer. the polytope (resulting after the removal of these vertices) will be. Clearly

by restricting our attention to pointed vertices of degree bounded by a constant, we’
can guarantee that the removal and triangulation of their cups will result in a linear
pumber of tetrahedra. On the other hand, we must also ensure that the removal will
in fact bring the size of the polytope down to linear to the number of its reflex edges

This is established by means of the following lemma. ‘

Lemma 2.6. Let d > 6 be a fixed integer, and let ¢ < 1 be a prespecified positive
reql. If r < c(d — 5)n/(4d — 4), then P contains at least (1 —c)d — S)n/(d — 2)
pointed vertices of degree at most equal to d whose domes are unhindered.

Proof.  Since a pointed vertex is incident upon nonreflex edges only, the sum of the
degrees d; of all pointed vertices is

Z d; < 2(m —r), (1

where m is the total number of edges of P. Let us denote by N and r’ the number of

pointed vertices of degree at most d, and the number of reflex vertices, respectively.
We can then write

;d,.=3z di+ Y d23N+(n—n—N)d+1). )

<di<d di>d

The combination of (1) and (2) yields 3N + (n — n’ — NYd+1)<2m—r)or

@d+1D)(n—n)—2m—r)
N > ) . (3)

Sinf:e each reflex vertex is incident upon at least one reflex edge, we have n’ < 2r
while the formula relating the number of edges, and the number of vertices of a

polytope of genus 0 provides us with the bound m < 3n — 6. Substituting these
values in (3), we derive

NZ(d+1)(n——2r)—2(3n—6——r)=(d—5)n—2dr+12
d—2 d-2 '

Among these vertices, at most 2r can have their domes hindered (Lemma 2.5). So,

in order to guarantee the presence of pointed vertices with unhindered domes, it
suffices that ,

d->5 2d 12

d—2n_d—2r+d—2>2r'
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Table 1. Values of ¢(d — 5)/(4d — 4) and (1 — c)d — 5)/(d — 2).

d=6 d=1 d=28 d=9 d=10 d=11 d=17 d=25

c=1  1/40 1/24 3/56 1/16 5/72 3/40 3/32 5/48
1/8 1/5 1/4 2/7 5/16 1/3 2/5 10/23
c=%  1/30 1/18 1/14 1/12 5/54 1/10 1/8 5/36
112 215 1/6 421 5/24 2/9 4/15 20/69
c=3% 380 1/16 9/112 3/32 5/48 9/80 9/64 5/32
1/16 1/10 1/8 1/7 5/32 1/6 1/5 5/23
c=% )25 1/15 3/35 1/10 1/9 3/25 3/20 1/6
1/20 2/25 1/10 4/35 1/8 2/15 4/25 4/23
c=3% 124 5/72 5/56 5/48 25/216 1/8 5/32 25/144
1/24 1/15 1/12 221 5/48 1/9 2/15 10/69
c=¢% 370 1/14 9/98 3/28 5/42 9/70 9/56 5/28
1/28 2/35 1/14 4/49 5/56 2/21 4/35 20/161

The number of such vertices will then be at least

d-5 24 12 @-9n-@d-4+12
d—2" a2 a7 " d—2

L1 —o@d=n+12

= i—2 ' O

What Lemma 2.6 states is that, provided that the number of reflex edges of P is
“relatively ” small, the number of pointed vertices of small degree whose domes are
unhindered is at least a constant fraction of the total number of vertices of P.
Consequently, by removing the cups of these vertices, and reiterating on the
resulting polytope, we will eventually end up with a polytope whose size will be at
least equal to a multiple of r, as desired.

In Table 1, we present the values of ¢(d — 5)/4d — 4) and (1 — c}(d — 5)/(d — 2)
for a small sample of values of ¢ and d. To clarify the meaning of these numbers, let
us consider a concrete example. Let us select, for instance, ¢ equal to 3. The table
indicates that if we pick d to be equal to 6, i.e., we intend to remove the cups of
pointed vertices of degree at most 6, then if the ratio of reflex edges over vertices of
the polytope is at most 3/80, at least one out of 16 vertices will qualify. If instead, d
is chosen equal to 11, then for a ratio of reflex edges over vertices no less than 9/80,
the ratio of “qualified” vertices increases to 1 out of 6. The figures in the table
persuade us that our algorithm can indeed be useful in practice.

3. The Triangulation Algorithm

Given a nondegenerate simple polytope P with n vertices and r reflex edges, we
show how to partition P into O(n + r?) tetrahedra. The algorithm requires O(nlog r
+ r? log r) time and O(n + r?) space. Up to within a constant factor, the number
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of tetrahedra produced is optimal in the worst case. This follows from a lower
bound of Q(m?) on the number of convex parts needed to partition a certain
pplytope of m vertices, which is a member of an infinite family {P,,} [7]. Indeed, we
simply add dummy nonreflex edges to P, until we have a polytope of n vertices v’vith
r reflex edges. Although not all realizable pairs (n, r) might be obtained in this way
enough of them are to justify our claim that O(n + r?) is a tight worst-case bound,
on the number of tetrahedra needed to triangulate a polytope with n vertices and r
reflex edges.

As we alluded to earlier, the triangulation algorithm consists of two phases
figuratively termed pull-off and Jence-off. In the pull-off phase we reduce the size 0}
the polytope to O(r). The idea is to locate pointed vetices of small degree whose
dome§ are not hindered, and to remove them by pulling their cups off, and by
replacing the boundary of P incident upon them by their domes. This shel’ling step
reduces the vertex count without increasing the number of reflex edges. Then, in the
fence-off phase, we erect vertical fences through each edge of P, achie;ing a
decomposition of P into cylindrical pieces that can be easily partitioned into
tetrahedra.

We assume that all the incidences in the polytope P are explicitly listed. For this
purpose we can use any of the standard polyhedral representations given in the
literature, e.g. winged-edge [5], doubly-connected-edge-list [217, and quad-edge
[17]. Wg also assume that P is given to us in normal form, meaning that it is free of
flat ver.tlces, and that its boundary is triangulated. A simple polytope can be
normalized in O(n + r log r) time. Its boundary can be triangulated using, say.
Mehihorn and Hertel’s triangulation algorithm [20]. To do so, we triangulate,each’
face_t 'by sweeping a line across its supporting plane, stopping only at vertices
ex'hlblting reflex angles. Since these vertices are incident upon reflex edges, there
will be at most O(r) sweep-line stops, each incurring a search and update c’:ost of
0(log r) time. The flat vertices can then be identified and removed in time linear to
the size of the polytope. Note that the normalization may increase the number of
nonreflex edges, but does not affect n or r.

3.1. The Pull-Off Phase

This is a form of preprocessing aimed at bringing down the number of vertices of a
given poly.tope P to the same order as the number of its reflex edges. Since our
strategy Yvﬂl be to remove the cups of a number of pointed vertices whose domes
are not'hlm‘iered, we need to be able firstly to decide whether the dome of a pointed
vcr‘tex ts hindered or not, and secondly to compute its cup. Let us consider a
pointed vertex v of P. The boundary of the convex hull of v’s crown consists of two
polyhedral patches separated by the crown itself, one of which isolates the other
from v, Let K, be the polytope that contains v and is bounded by the patch in
question and the cone of v. The dome of v will be unhindered if and only if every
reflex vertex and every reflex edge of P lies either outside K, or on the boundary of
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K, that is incident upon v. Furthermore, if the dome of v is unhindered, v’s cup is
precisely K.

So, in order to decide whether the dome of a pointed vertex v is hindered or not,
we have to check K, against both the reflex vertices and the reflex edges of P. We
can unify the two cases using the technique applied in Lemma 2.1, i.e., replacing
each reflex edge by a dummy reflex vertex at its midpoint. The reflex vertices and
the midpoints of the reflex edges are collectively called puncturing vertices, and
their number is no more than 3r. Note that these vertices alone can determine the
pointed vertices whose domes are hindered, since every hindered dome contains at
least one puncturing vertex that does not lie on the crown. At the outset of the pull-
off phase, we assume that every puncturing vertex is potentially hindering a dome.
Local tests on the incidence structures of the vertices might allow us to weed out
many candidates. Although this might be a practical step to take, it is not necessary
strictly speaking. In the light of the definition of the puncturing vertices, the test for
unhindered domes is stated as follows: first K, is computed; then, if no puncturing
vertex lies inside K, or on K,’s boundary that is not incident upon v, the dome of v
is not hindered; in this case, the cup of v is precisely K.

To achieve the desired reduction in the size of P, we will have to remove Q(n)
cups, whose domes must have been verified to be unhindered. Checking the
corresponding K;’s against each of the puncturing vertices, however, amounts to an
undesirable Q(nr) time complexity for this phase. To improve on this, we assume
for the moment that an oracle, the Witness Oracle, provides us with a set Wof facets
of P, after 0P has been triangulated. The members of W are referred to as witness
facets, and have the following properties:

(i) the set of vertices incident upon all witness facets is a superset of the pointed
vertices that have hindered domes,
(ii) each witness facet f is associated with a subset of puncturing vertices that
potentially hinder the cups of f’s vertices, and
(iif) each puncturing vertex is associated with no more than four witness facets.

The implementation of the Witness Oracle is described in the next subsection.
The pull-off phase is an iterative process. In the general step, we are working on
a polytope Pfi > 1), where P, is the given polytope P. Unless the number of
vertices of P; is not “much” larger than the number of its reflex edges (see Lemma
2.6), we remove from P; a number of pointed vertices whose domes are not
hindered, producing P; ., the next polytope to work on. The removal is carried
out as follows: first, we go through all the pointed vertices of P;, looking for those
of degree no more than some fixed constant d, and we insert them in a queue of
favorable vertices; once all the vertices have been processed, we repeat the following

steps until the queue is empty.

1. Let v be the favorable vertex referenced by the top of the queue. If v is marked
to be skipped, we remove v from the queue, and we reiterate. Otherwise, we
go through the facets of P, that are incident upon v, and determine v’s crown,
without, however, modifying the boundary of P,. Then we compute the
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Fig. 9. The effect of the computation of v’s crown on six coplanar facets incident upon v.

convex hull of the crown, and from that, the polytope K, as described in the
opening paragraph of the pull-off phase.

2. If v is incident upon a witness facet f, we check whether the puncturing
vertices associated with f lie inside K, or on the part of K,’s boundary that is
not incident upon v, thus determining whether the dome of v is hindered
or not. Since the cup of v is of constant size, this can be done in time
proportional to the number of puncturing vertices probed. If the dome of v is
found hindered, we remove v from the queue, and proceed with step 1.

3. We are now ready to extract and triangulate the cup of v, which is in fact K,;
its size is constant, as the degree of v is no more than the fixed constant d.
First, the boundary of P, is retriangulated, so that the resulting polyhedral
patch formed by the facets of P; incident upon v is precisely (dcup(v))\
dome(v) (Fig. 9). (Note that the retriangulation involves only the facets of P,
that are incident upon v.) As a result, some facets of P, may be substituted by
new ones. In case that such a facet f is a witness facet, the information in W
must be updated, and the puncturing vertices associated with J must be
appropriately distributed among the new facets that intersect /. After that, the
cup of v can be pulled off by removing the facets of P, that are incident upon v,
and substituting them with facets of the dome of v. The dome of v is easily
retrieved from K. Again, if any of the removed facets, say f, belongs to W, the
new witness facets that result from f’s removal need to be determined (these
are the fgcets of the dome of v that lie vertically above or below f), and lists of
puncturing vertices associated with them need to be set up. Finally, the cup of
v, or equivalently K,, is triangulated. The decomposition consists of the
tetrahedra determined by v and each nonincident facet of K,’s triangulated
boundary.

4. We remove v from the queue, and mark the vertices adjacent to v before the
cup removal, so that they are skipped if met later in the queue.

Property (iii) of the witness facets and step 4 ensure that each puncturing vertex
will not be probed more than a constant number of times during a single pass
through all favorable vertices. As a result, such a pass over a polytope of n; vertices
will take a total of O(dn; + r) time. From Lemma 2.6 and the fact that atmostd + 1
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favorable vertices are removed from the queue or marked each time step 4 is
executed, we derive that this process removes at least

1 1-c)d-25)
d+1 d—2

n; > an

vertices from the polytope, where « is a fixed positive constant less than 1. Thus, we
are left with a polytope of n;,, < (1 — a)n; vertices and at most r reflex edges.
Repeating this pruning pass until n; = O(r) takes time proportional to ) (n; + r) =
O(n + r log n). Note that as the cups of the vertices are being pulled off, some reflex
vertices may become pointed. Therefore, the set of puncturing vertices, and
consequently the set of witness facets, may need updating. We choose, however, to
make no updates at all, possibly ending up with some unnecessary work being
done. In any case, the stated time complexity is not affected.

Summarizing, the total time required by the pull-off phase, the witness oracle
included, is O((n + r?) log r), taking into consideration that the time complexity of
the oracle is O(n log r + r 2 log r), and that r log n = O ((n + r*) log r).! The total
space needed amounts to O(n + r?). Finally, since each pulled-off cup produces at
most d — 2 new tetrahedra, by the end of this phase, P is decomposed into a
collection of O(n) tetrahedra and a polytope of O(r) vertices.

3.2. The Witness Oracle

For a given polytope P of n vertices and r reflex edges whose boundary is
triangulated, the oracle comes up with a set of O(r) facets of P, whose vertices form
a superset of the pointed vertices that have hindered domes. The following lemma,
which takes advantage of the geometry of the cup, provides us with the idea to
carry out this computation.

Lemma 3.1. Let v be a pointed vertex of a polytope P and let p be any point of
dome(v)\ crown(v). Then, for every line passing through p, at least one of the two rays
from p must intersect the closure of a facet (of P’s triangulated boundary) incident
upon v. Moreover, the line segment delimited by p and the point of intersection lies
entirely in P.

Proof. By definition, the dome of v is a concave polyhedral patch with respect to
v’s cup. Therefore, either at least one of the two rays from p intersects the interior of
the cup, or the line lies on the dome (in this case, the dome consists of coplanar
facets) and thus intersects the crown. In either case, the line intersects the closure of
one of the cup facets incident upon v, and the line segment with endpoints the point
p and the point of intersection with the facet lies in the cup of v, and consequently in

! The function h(x) = x/log x is strictly increasing for x > e ~ 2.718. Thus, h(r) < h(n + r?), which
directly implies that r log n < (n + r?) log r.
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P. For a given triangulation 1 of 4P, let n(z, 7) denote the connected polyhedral
patch consisting of the facets of P incident upon z. It is easy to see that the facets of
the cup of v that are incident upon the apex constitute the intersection of all the
patches 7(v, 7;) over all possible boundary triangulations 7,. Thus, we conclude that
the line intersects the closure of a facet of the polytope incident upon ». O

.The lemma implies that a set of facets of P, whose vertices form a superset of the
pomted vertices that have hindered domes, can be computed, if, for each punctur-
Ing vertex p, we compile a list of the facets of P that are intersected by the vertical
lm(? through p, and, among them, we retain only those for which the line segment
delimited by p and the point of intersection lies entirely in P. For convenience, we
assume 'that no vertex of the polytope lies vertically above or below any of the
puncturing vertices. Note that this assumption can be checked in O(n log r) time
and can be relaxed with little extra effort. This assumption narrows down the
number of facets intersected by a vertical line through a puncturing vertex to at
most two per boundary crossing; as a result, the number of facets in the final list
will be proportional to the number of puncturing vertices. So, our task is to
determine which (triangular) facets of P are traversed by a vertical line passing
through a puncturing vertex.

If we take projection on the xy-plane, we can restate the problem in terms of the
facets pf P as follows: Which projections of puncturing vertices (on the x y-plane) lie
n a given triangle? To answer such a question, we set up a complete binary tree
whose l.eaves are in one-to-one correspondence, from left to right, with the
puncturing vertices of P, ordered by nondecreasing x-coordinates. With each
internal node ¢ of the tree, we associate the canonical strip {(x, y)[ X, < x < x }
whe.re Xmin and X, are respectively the smallest and largest x-coo‘;dglate; o}n ;i‘le’
vgrtlces associated with the leaves descending from t. Let abc be the projection of a
triangular facet f of P on the xy-plane, with a < b < ¢ in x-order. Following
standgrd segment tree partition [23], and using the x-order of the tree leaves, we
part.itfon the x-extents of ab and be into O(log r) intervals. This, in turn, induc,es a
par.tmon of abc into a logarithmic number of trapezoids (or triangles), every one of
which is associated with a distinct node of the tree. F or each such node ¢, we must
determine which points among those stored in ¢’s descending leaves lie i,nside the
correspgnding trapezoid. One nice feature in this set-up is that although we have
many different trapezoids, we can replace each of them in the computation by one
of two fixed double wedges.

Wg dualize the problem using the following asymmetric transformation: a point
(u, v) is mapped to the line y = ax + b;aline y=kx +dis mapped to the point
(—k, d‘)..Note that the transformation maps vertical lines to a point at infinity
gnd tbls 1s what makes it attractive for our purposes. The reason is that no vertical’
line lies entirely in any of the double wedges with which we are dealing, and
therefore, the chosen transformation maps such wedges to finite length’ line
segments. (A different transformation might map such a double wedge to a pair of
collinear rays.)

'The app!ication of the duality transformation results in each node of the tree
being associated with a certain arrangement of lines (the duals of the projections of
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the vertices stored at the leaves below the node in question). We do not store these
arrangements explicitly, except the one at the root of the tree. This takes O(r?) time
and space, using the methods of Chazelle et al. [10] and Edelsbrunner et al. [14].
We further process the root arrangement to support O(log r)-time point location
[18], [13], which requires a linear amount of work through the arrangement. As it
turns out, we also need point-location structures for all the other arrangements in
the tree. We can use an economical strategy, however, based on the fact that the
arrangement of a node is a portion of the arrangement of its father. More
specifically, each region of a father’s arrangement lies entirely within one region of
either child’s. Thus, we provide each region of the root arrangement with two
pointers, one directed toward the enclosing region for each child. The same pointer
scheme can be applied throughout the tree, although the only arrangement, and
hence geometric information, stored in the tree lies at the root and at the leaves.
Setting up all these pointers can be done in O(r?) time by ensuring that the work at
a given node is at most proportional to the square of the number of its descending
leaves. In the general step, we have at our disposal the full arrangement at a given
node, and we color the lines green or red, depending on which of the left or right
children inherits them. To compute, say, the green arrangement with the pointers
directed to it, we begin by merging collinear green edges into edges of the green
arrangement. By traversing the full arrangement, we can now collect each region
lying within a given region of the green arrangement. The same process applied to
the red edges completes our work.

In dual space, the problem of finding which members of the point-set associated
with a given tree node ¢ lie in a double wedge is the same as computing which lines
of a line arrangement intersect a line segment. The latter version is easily resolved
using our data structure. First, we need to locate the endpoints p and q of the line
segment in the line arrangement. To do that, we locate p and g in the root
arrangement, and then using region-to-region pointers, we go down the tree
stopping at the node t. The entire operation takes only O(log r) time. If p and q lie in
the same region, no further work need be done, and the answer is the empty set.
Otherwise, we pursue our search in the two children of . This process takes us to a
certain subset of the leaves, where the desired intersections can be found directly.
Since a vertical line can cut only O(r) facets, the total amount of time spent
computing intersections between lines through puncturing vertices and facets of P
is no more than O(n log r + r? log r).

As mentioned earlier, of all the intersections between a vertical line through a
given puncturing vertex p and the facets of P, only those for which the line segment
connecting p to the point of intersection on the facet lies in P need be retained for
further consideration (Lemma 3.1). Since a puncturing vertex will contribute no
more than four facets, and there are at most 3r such vertices, the total number of
selected facets is O(r). Furthermore, during the selection process, pointers to the
corresponding puncturing vertices are included in the records of the facets that are
retained. As a result, in the end, the record of each such facet f contains a list of the
puncturing vertices that potentially hinder the cups of the vertices of /. From a time
complexity standpoint, the Witness Oracle accounts for O((n + r?) log r) in the
running time of the algorithm. The space needed amounts to O(n + r?).
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3.3, The Fence-Off Phase

Our goal here is to triangulate a nondegenerate simple polytope of n vertices into
O(n?) tetrahedra. This method is satisfactory if at least a fixed fraction of the edges
are reflex. We begin by partitioning P into cylindrical pieces, and then we
triangulate each piece separately. To build the cylindrical partition we attach
vertical fences to each edge, reflex and nonreflex, one at a time. Let us say that a
point p is visible from an edge if it can be connected to it by a vertical segment
whose r.elative interior lies in the interior of P. The set of points visible from an edge
e is easily seen to be a monotone polygon: it is called the fence of e and is to be
attached to it (Fig. 10). Our fences are similar to the walls used in the slicing
theorem of Aronov and Sharir [1]; one difference is that while fences project
vertically onto their attaching edges, walls flood all over the free portion of the
vertical plane passing through the edge.

The fencing operation partitions P into cylindrical pi -
cal
defined by y pieces, each of which can be

(1) s'pejcifying a horizontal base polygon,
(11) lltjtmg it vertically into an infinite cylinder, and
(i1i) chppmg the cylinder between two planes (which do not intersect inside the
cylinder).

Although some fences may have exposed edges “sticking out,” the hope is that in
the epd. the cylindrical pieces will form a convex decomposition of P. Unfortunate-
ly, this is not always true. Of course, every reflex edge of P is “ resolvea ” in the sense
that the angles between its adjacent facets cease to be reflex. The problem is that
new reflex edges might be created between two fences (Fig. 11). Let us examine this
phc?nomenon In some detail. Let e be a vertical edge of a fence. Since the edge e is
incident upon at least one vertex of P, and 0P is triangulated, the edge e cannot be
left exposed after the fencing. It is conceivable, however, that e coincides with an
edge of apother fence which results in a dihedral angle larger than n. What we can
say at this point is that the fences partition P into cylindrical pieces, which are free
of ponYertical reflex edges. But then, a triangulation of the base pc;lygons of each
cylindrical piece refines the partition into one consisting of cylindrical pieces whose
base polygons are triangles. A decomposition of P into tetrahedra follows trivially.

Wig. 10. The fence of ab.

W
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Fig. 11. A nonconvex cylindrical piece.

In general, erecting fences will result in cutting off some edges into subedges. We
still treat each edge as one entity, and deal with all its subedges in one fell swoop.
We give a very simple, albeit slightly inefficient, method for computing the fence of
an edge e of P. Let Z be the set of segments obtained by computing the intersection
of the facets of P with the projection of e on their supporting planes. In general,
¥ consists of a number of disjoint polygonal curves. Next, we compute the
trapezoidal map induced by the visibility relation among the segments of X. This
is the planar partition formed by ¥ and all the vertical segments that connect
endpoints to their visible segments in X. Since each trapezoid is bounded by a
vertical segment through an endpoint, which corresponds to an edge of P, and
there are O(n) edges, the size of the trapezoidal map is O(n). The map is computed
by sorting the segments in X, and by sweeping them in order, to determine the
visibility polygons. The entire computation for each edge can be carried out in
O(n log n) time.

We do not, however, store each fence explicitly. Instead, we include each
nonvertical bounding segment s of each fence in a list associated with the facet
whose intersection with the fence is precisely s. After all fences have been computed,
and their bounding segments have been attached to the appropriate facet records,
each facet of P is scanned in turn, and its constrained triangulation is computed
(the constraints are the edges incident upon the facet and the fence segments
associated with it). The triangles reported are inserted in a global list of triangles.
If we merge collinear segments during the triangulation, the list of triangles
consists, in the end, of pairs of triangles such that

(i) the projections of the members of a pair on the xy-plane are identical, and
(ii) the cylindrical polytope that is determined and bounded by such a pair lies

in P.

Note that the collection of these cylindrical pieces is nothing but the refined
decomposition of P into cylindrical pieces that we mentioned earlier. The pairs of
triangles will not necessarily be in order in the list. This can be achieved, however,
by sorting the triangles in the list with respect to the x- and y-coordinates of their
vertices (this will bring together triangles with the same projection on the xy-
plane), and, in case of ties, with respect to the z-coordinate of their barycenters,
which will do the final matching. Each cylindrical piece determined by such a pair
of triangles can be trivially decomposed into at most three tetrahedra.
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The introduction of fences results in a partition of P that involves a total of
O(n?) vertices, edges, and facets. The triangulation of the facets and the extraction
of tetrahefira merely adds a constant multiplicative factor to the size of the
decomposition. Therefore, the description size of the final partition is O(n?), and
c.onsequently O(n?) tetrahedra are produced. As mentioned earlier, the com;’)uta-
tion gf all the fences takes O(n? log n) time. The triangulation of a facet that is
associated with k; constraining segments can be carried outin O(1 + k; log k;) time
so that triangulating all the facets will take a total of O(n?log ni timel since’
Yk :.O(n"). Finally, sorting the triangles takes another O(n? log n) time: while
processing the pairs does not take more than O(n*). Summarizing, the entire
fence-off phase requires O(n* log n) time and O(n?) space.

3.4.  Putting the Pieces T ogether

Given a nondegenerate simple polytope of zero genus with n vertices and r reflex
edges, we start the partitioning by

(1) re‘moving all flat vertices, and doing the obvious clean-up,
(11) triangulating the boundary, and
(1) applying the pull-off phase in case n greatly exceeds r.

We finish the decomposition by going through the fence-off phase. The running
time of the algorithm is O(n logr+r?logr). In practice, it will be important to
have a ropust representation of cell complexes in 3-space in order to carry out the
computation successfully and efficiently. A representation of three-dimensional
polyhedral subdivisions, along with the set of navigational primitives needed to

carry out the required cutting operations, can be found in [ 12]. We summarize our
results below.

"Ijheorem 1. In O((n + r¥)logr) time it is possible to partition a nondegenerate
simple polytope of genus O with n vertices and r reflex edges into O(n + r?) tetrahedra.
The time bound includes the cost of producing a full-fledged triangulation with an
explicit description of its facial structure. U P to within a constant factor, the number
of tetrahedra produced by the algorithm is optimal in the worst case. ’

4. Closing Remarks

Of course, not every n-vertex polytope with r reflex edges necessitates Qn +r?)
tetrahedra to form a triangulation. Are there simple heuristics which could be used
to guarantee that the triangulation size does not exceed the minimum by more than
a ﬁxed‘constant in all cases? Is there a polynomial-time algorithm for such an
gpproxxmation scheme? Also, it is often desirable to avoid long, skinny tetrahedra
in mesh generation. See [4] for similar concerns in two dimensions. One approach
1s to retriangulate the undesirable tetrahedra produced by our triangulation.
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Again, are there preferred heuristics to keep the number of Steiner points as low as
possible?
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