Computational
Geometry

Theory and Applications

it

ELSEVIER Computational Geometry 5 (1995) 27-32

Derandomizing an output-sensitive convex hull algorithm
in three dimensions

Bernard Chazelle®* !, Jifi Matousek®

*Department of Computer Science, Princeton University, Princeton, Nj 68544, USA
“Department of Applied Mathematics, Charles University, Malostranske nam. 25, 11800 Praha 1,
Czech Republic

Communicated by Kenneth Clarkson; submitted 17 December 1991; accepted 31 August 1994

Abstract

We consider the computation of the convex hull of a given n-point sct in three-dimensional
Euclidean space in an output-sensitive manner. Clarkson and Shor proposed an optimal
rendomized algorithm for this problem, with an expected running time O(nlogh), where
h denotes the number of points on the surface of the convex hull. In this note we point out that
the algorithm can be made deterministic by using recently developed techniques, thus obtaining
an optimal deterministic algorithm.

Keywords: Computational complexity; Computational geometry; Randomized algorithm;
Convex hull

The computation of the convex hull of a given n-point set in an Euclidean space of
a small fixed dimension d has been intensively studied in computational geomeiry.
Most of the work has concentrated on the worst-case scenario; it is known that for
certain inputs, the computation may require {nlogn) time for d = 2, 3 and Q{n'9/2}
for d = 4. These worst-case lower bounds can be matched: optimal algorithms were
given by Graham [67 for d = 2, by Hong and Preparata [13] ford = 3, by Seidel [15]
for every even d, by Clarkson and Shor [2] for all d (with randomization) and finaily
by Chazelle {17 who constructed an optimal deterministic algerithm for a general
fixed dimension. For many point sets, however, the actual compiexity of the convex
hull is much smaller than the worst-case bound and it is interesting to investigate

*Corresponding author.
"Work by Bernard Chazelle has been supported by NSF Grant CCR-90-02352 and the Geometry
Center.

0925-7721/95/$09.50 © 1995 Eisevier Science B.V. Al rights reserved
SSDI 0925-7721(94)00018-2

28 B. Chazelie, J. Matousek [Compurational Geometry 5 (1995) 27-32

algorithms which can take advantage of this. Kirkpatrick and Seidel [8] gave

convex hull algorithm in dimension 2 which is optimal in this setting, attaining
a running time O(nlogh), where h denotes the number of vertices of the convex hull.
Seidel { 14] gave an output-sensitive aigorithm for a general dimension 4 with running
time O(n? + hlogn). The quadratic overhead can be reduced to

2~-——2*——‘+6
Ofn LaRJ+170

for any fixed & > 0 using the results of {11].

In this paper we consider the case of dimension 3. For this case, Edelsbrunner and
Shi {57 gave a fairly complicated O(n log? h) output-sensitive algorithm. Clarkson and
Shor [2] discovered an optimal O(nlog h) randomized output-sensitive algorithm. In
this note we observe that general methods for an efficient derandomization of
geometric algorithms, developed in {9, 10], can be applied to Clarkson and Shor’s
aigorithm, yielding the following result.

Theorem 1. Given a set P of n points in £, its convex hull can be computed deterministi-
cally in time O(niogh), where h is the number of points of P on the surface of the convex
hull.

Let us remark that for point sets in highly degenerate positions, the algorithm
guaranteed hy the previous theorem doesn’t have the best kind of output-sensitivity
one might desire: in a “truly” output-sensitive algorithm, A should stand for the
number of vertices of the convex hull. We decided to use the above weaker formuia-
tion (similar to Clarkson and Shor’s), since it allows us to make a general position
assumption and brings a considerable technical simplification of the presentation.
With some more technicalities, one can get also an output-sensitivity in the stronger
sense.

In the sequel, we first introduce some tools, and then we give a reasonably
self-contained proof of Theorem 1. Actually, there are now several ways to proceed,
and we tried to choose one using the simplest machinery. For a comparison with the
randomized algorithm we refer to [21, and for more background and examples of use
of the derandomization methods we refer, e.g., to papers {9, 1, 10].

We will assume that the bounding planes of the halfspaces are in generai position,
This assumption can be removed either by simulation of simplicity {see [41), or by
a careful analysis of possible degenerate cases. The algorithm is best described in
a dual setting, where we consider a collection of n halfspaces in [*, and we want to
compute their intersection. In this setting, the parameter # stands for the number of
facets of the intersection, and this is in turn proportional to the number of its vertices
{having assumed general position).

It is known that in linear time, one can decide whether the intersection of » haif-
spaces has a nonempty interior, and if yes, also find one of its interior points o (see
[3,12]). Hence, our problem becomes the following: we have a collection H of n planes

B. Chazelle, J. Matousek | Computational Geometry 5 (1995) 27-32 29

in general position, and a point o lying in none of the planes, and we seck the
intersection of the halfspaces determined by the planes of H and the point o. This
intersection will be denoted by #(H). Further, let A(H) denote a triangulation of
2(H), constructed as follows: first every facet of 2(H) is triangulated from its vertex
with the lexicographically smallest coordinate vector (so-called bottom-vertex tri-
angulation), and then each triangle of these triangulations is lifted into a simplex with
a vertex at the point o. It is well known that the resulting decomposition of #(Hj is
a simplicial complex, and it has O(|H|) simplices.

For a simplex s, let H, denote the collection of planes of H intersecting it. We will
use the foilowing lemma, whose first part is by now a standard random sampling
result.

Lemma 2. (i) [2] Let R be a random subset of r planes in H. Then, for suitable
constants C,C’, the following two conditions hold with a fixed positive probability:
(a) For every simplex s € A(R), | H,} < C(JH{/r) logr.
(b) Y seamHsi < C'IH.
(11} Given H and r, a sample R as in (1) can be computed deterministically in
time polynomial in |H|.

Part (ii) of this lemma is proved by a standard application of the method of
conditional prebabilities of Raghavan and Spencer; see, ¢.g., [9] for an example of use
of this method in a similar context. [

Now we need the concept of s-approximations. In our setting, we say that a subset
A € H is an g-approximation for H (with respect to simplices; 0 <¢ < 1 is a real
number), if for every simplex s it holds true that

H A,
{H{ [A]

H

We need the following result about computing e-approximations.

Lemma 3 [10]. There exists a constant o > 0, such that given H and r, r < n’,
a (1/r)-approximation for H of cardinality O(r®) can be computed deterministically in
time O(nlogr).

Putting the previous two resulis together, we get the following.

Coroliary 4. There exists a constant o > 0, such that given H and r, r < 0%, a sample
R with the properties (a), (b) from Lemma 2 can be computed in time O{nlogr).

Proof. We compute R in two steps. First, in time O(nlogr), we find a (1/r)-approxima-
tion 4 for H, of cardinality O(r®). Then we apply Lemma 2(ii), computing a sample
R which has the required properties relative to A. If r is small enough, the running

30 B. Chazelle, J. Matousek | Compurational Geomerry 5 (1995) 27-32

time of this second step will also be dominated by O(nlogr). And using the definition
of an e-approximation, it is easy to see that a sample R which has the required
properties relative to 4 will also be good with respect to H, only with somewhat worse
constants of proportionality. [

Before we start with the aigorithm, we need two more auxiliary resuits. The first one
repiaces a randomized incremental construction in [2] by a deterministic counterpart.

Lemma 5. Given H and A(R) as in Lemma 2, one can compute the collection H, for
every s € A(R)}, in total time O{nlogr}.

Proof. We will trace the incidences with the simplices of A{R) for every plane of
H separately. Once we know one simpiex s intersected by a piane h, we can trace all
the remaining incidences of 4 in time proportional to their number, by a graph search
algorithm (here one uses the special properties of the triangulation A(R)). It suffices to
show how to find a starting simplex: to do this it suffices to find a vertex of Z(R)
separated by k from o. A dual version of this problem is to find a facet of a polyhedron
separating a query point from infinity; this in turn can be transformed into a two-
dimensional point location problem, for which optimal solutions are known (e.g., [7]).
Hence, with O(r) preprocessing, we can find a starting simplex {or decide that h misses
A{R} completely) in G {logr) time. Thus the total time for computing all the H/'s is at
most O(nlogr) + ¥ eam!Hyl = Onlogr). [

Lemina 6 [2]. Let s be a simplex and H the collection of planes intersecting it. One can
decide whether s contains a vertex of P(H) by a deterministic algorithm in time
O{i H,l log h), where & denotes the number of vertices of P{H).

For completeness, we sketch the proof here: We consider each of the planes
o bounding the simplex s, and we compute p N P(H,). Each such problem is just a dual
of a computation of the convex hull of a planar point set, and we use the output-
sensitive algorithm of Kirkpatrick and Seidel [8] for this computation. Hence in time
O(iH,]logh) we can find the portion of #{H) within every face of s. With this
knowledge we can use a straightforward consistency check to detect whether s con-
tains a vertex of 2(H). [

Now we can describe the output-sensitive convex hull algorithm. One of the
problems we must handle is that we do not know the value of 4 in advance. To
circumvent this probiem, we establish the following.

Lemma 7. Let H be a collection of n planes in £, and b < n a parameter. There exists
a constant B and a deterministic algorithm, such that if #(H) has at most b vertices, then
the algorithm computes P(H) in time at most Bnlogb; otherwise it always finishes within
the above time bound and it may either compute #(H) or report a failure.

B. Chazelle, J. Matousek | Computational Geometry 5 (1995) 27-32 31

Once this lemma is proved, we complete the proof of Theorem 1 as follows: We
define a sequerice by, b, ... by setting b, to a large enough constant, and b,,; = b}.
We then run the algorithm from the Lemma first with b = b,, then if a failure is
reported we repeat it with b = b,, etc. Obviously, we gain the desired answer no later
than for b; > h, so the total running time is at most

loglog h
> Bnlogh;<Bn) 2'=0O(nlogh).
ijbi<h i=1

In the proof of Lemma 7, we may concentrate on the case when b is refatively small
compared to n, namely b < n® for some fixed 8 > 0 (otherwise an O(nlogn) convex
hull algorithm will do}. In such case, we use the following algorithm:

We set Hy = H. We assume inductively that in the i-th step of the algorithm
(i=0,1, ...), we have a collection H, of cardinality n; < n/2', which contains all planes
of H contributing a facet of Z(H). If n;logn < nlogb, we use an QO(nlogn) convex hull
algorithm to compute 2(H;) = 2(H), in time O(n; logn;) = O(nlogb), and this will be
the last step of the algorithm. Otherwise our goal will be to discard at least half of the
pianes of H;. Note that in this case n; must be quite large compared to b, in particular
we may assume b < nf for a prescribed constant f > 0. This allows us to apply the
approximation tools for the deterministic computation.

We proceed as follows: we set »r = 3Ch logb, and we compute a sampie R < H;
according to Corollary 4, in time O(n; log b). Then we compute A(R), the collections of
planes of H; intersecting each simplex of A(R) {using Lemma 5) and we use Lemma
6 to detect the simplices of A(R) which contain at least one vertex of #(H;)}.

If h < b, this computation takes time at most O(r)- O((n/rilogh) = O(n;logb). If
h > b, then the running time might be longer; we thus let this computation run for
only B'n;log b steps for a suitable constant B', and if it does not finish within this limit,
we terminate it and we report a failure of the algorithm.

If this computation has finished successfuily, we form a collection H; . ;. We include
all the planes intersecting the simplices which do contain a vertex of #(H). In this way
we have included all relevant planes. If & < b, then at most b simplices of A{R} contain
a vertex, and by the property (a) from Lemma 2, we get n.; = [Hjo i <
b-C(n;/rylogr < n;/2. Hence if h < b holds, we may certainly continue with the
{i + 1)-st step of the algorithm, having spent O(n,;log b) time on the i-th step. Other-
wise it may happen that n;, ; > n,/2, and in such a case we report a faiture and finish.

The total running time of this algorithm is O(nlogh) + 3 ;O(n;logb) = Ofnlogh)
as required, and this finishes the proof of Lemma 7. [

References

[1] B. Chazeile, An optimal convex hull algorithm in any fixed dimension, Discrete Comput, Geom. 10
(1993) 377--409.

{21 K.L. Clarkson and P. Shor, New applications of random sampling in computational geometry II,
Discrete Comput. Geom. 4 (1989) 383-421.

32 B. Chuzelle, J. Matousek | Computational Geometry 5 (1995) 27-32

{37 M.E. Dyer, Lirear time aigorithms for two- and three-variable linear programs, SIAM J. Comput. 13
(1584) 3145,
{43 H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer, Berlin, 1987).
5% H. Edelsbrunner and W. Shi, An O(nlog?h) time algorithm for three-dimensional convex hull
problem, SIAM J. Comput. 20 (1951) 259-269.
{67 R.L. Graham, An efficient algorithm for determining the convex huli of a pianar point set, Inform.
Proc. Lett. 1 (1972) 132-133.
{71 D.G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1983) 28--35.
783 D.G. Kirkpatrick and R. Seidel, The uitimate planar convex hull algorithm? SIAM 1. Comput. 15
(1986} 287-299.
{97 J. Matousek, Approximations and optimal geometric divide-and-conquer, in: Proc. 23rd ACM Symp.
Theory of Comput. (1991) 506-511.
{10} 1. Matousek, Efficient partition trees, Discrete Comput. Geom. 8 (1592) 315-334.
[111 3. Matousek, Linear optimization queries, J. Algorithms 14 (1953) 432-448.
{127 N. Megiddo, Linear programming in linear time when the dimension is fixed, J. ACM 31 (1984)
114-127.
{133 F.P. Preparata and S.J. Hong, Convex hulls of finite point sets in two and three dimensions, Comm.
ACM 20 (1977) 89-73.
{147 R. Seidel, Constructing higher-dimensional convex hulls at logarithmic cost per face, in: Proc. 18th
ACM Symp. Theory of Comput. (1986) 404—413.
{157 R. Seidel, A convex hull aigorithm optimal for point sets in even dimensions, Univ. British Columbia,
Technical Report 81-14, 1581.

