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An Algorithm for Segment-Dragging and Its Implementation’
Bernard Chazelle?

Abstract.  Given a collection of points in the plane, pick an arbitrary horizontal segment and move
it vertically until it hits one of the points (if at all). This form of segment-dragging is a common
operation in computer graphics and motion-planning. It can also serve as a building block for
multidimensional data structures. This note describes a new approach to segment-dragging which
yields a simple and efficient solution. The dala structure requires O(n) storage and O{(n log n)
preprocessing time, and each query can be answered in O(log ») time, where n is the number of
points in the collection. The method is best understood as the end result of a sequence of transforma-
tions applied to a simple but inefficient starting solution.

Key Words. Multidimensional searching, Functional data structures, Computer graphics, Motion-
planning.

1. Introduction. This note is devoted to the following segment-dragging problem.
Let P={p;: (x;, »)|0=i<n} be a collection of points in the plane, represented
in a Cartesian system of coordinates (Ox, Oy). For any horizontal segment AB,
with A=(a, ¢), B= (b, ¢), and a < b, we define hit(AB) = i, where p; is the point
of maximum ordinate, such that

(1) asx;=sb and ysc

See Figure 1. If no p, satisfies (1) then we assume that hit(AB) =n. If, on the
contrary, more than one point have the largest ordinate among those verifying
(1), we then pick the candidate with the smallest abscissa as hit(AB). With these
definitions at hand the problem can be formulated quite simply: implement the
function hit effectively, using little preprocessing.

Segment-dragging is a common operation in computer graphics, especially for
windowing tasks [3]. It can also be useful for a window manager. As observed
by Mitchell [5], segment-dragging is important in certain problems of motion-
planning. Also, it is often a tool for more complex operations. For example, it
can be used to test whether a query rectangular box is empty, given a collection
of points in any fixed dimension.

In practice, dynamic solutions—where points can be added and removed—are
often preferable to static ones. We restrict our attention to the static case, however,
because the solution described in this paper falls in a certain family of data
structures which can be efficiently dynamized. Unfortunately, the dynamic version
is complicated and can hardly be called practical. On the contrary, our static

' This work was started while the author was a visiting professor at Ecole Normale Supérieure, Paris,
France.
% Department of Computer Science, Princeton University, Princeton, NJ 08544, USA,

Received August 1, 1986; revised March 2, 1987, Communicated by C, K. Wong,




206 B. Chazelle

Fig. 1

solution is easy to implement and seems very efficient in practice. The size of the
data structure is O(n) and the time for its construction is O(n log n); moreover,
any query can be answered in O(log n) time. This is a new complexity result.

Previous work on segment-dragging includes a solution in O(n log n) space
and O(log n) query time [3]. As can be easily observed, segment-dragging is a
special case of range searching for maximum. In the latter problem points are
assigned weights, and a query requests the point of maximum weight falling in
a given rectangle. Thus, to perform segment-dragging, one can use the various
algorithms for range searching described in Chazelle [2]. In particular, this gives
three solutions: one in O(n) space and O(log'** n) query time, for any &> 0;
another in O(n loglog n) space and O(log n log log n) query time; and a third
onein O(n log" n) space and O(log n) query time, again for any & > 0. A simpler,
but less efficient, solution can be found in Gabow ef al [4]. Note that the algorithm
which we present here is not a substitute for these solutions since it concerns a
more restrictive problem. It uses a compaction scheme introduced in Chazelle
(2], as well as a number of bit-twiddling tricks, in order to produce a data structure
which is both simple and efficient.

We believe that our solution is best understood as the end result of a series of
transformations applied to a simple but inefficient data structure. For the sake
of clarity our discussion will follow this transformational approach. In the end
we will obtain a complete implementation of the algorithm in standard PASCAL.
Using techniques from Chazelle [2], the algorithm can be ported to a pointer
machine, that is, all address calculations can be eliminated. Admittedly, much
of its simplicity is lost in the process.

2. Preliminaries. In order to confine our discussion to the essential parts of the
algorithm we choose to make a number of simplifying assumptions:

(i) A query segment AB may not contribute the smallest or largest coordinate
in Pu{A, B},

(ii) A query segment may not share coordinates with the points of P and the
latter may not share coordinates among themselves.

¥
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(iii) The number of points is of the form n=2" (w>0).
(iv) A computer word can hold any integer between 0 and n log n (we choose
this value for convenience, and others, such as n, would do just as well).

It is elementary to satisfy all these conditions. For (i), the query segment can
be clipped, if needed. To ensure (ii) we can go into rank space using presorting.
As to (iii), if necessary, we can always pad P with extra points at “infinity” to
reach the nearest power of 2. Finally, to satisfy (iv), we can use several words
at once to emulate a longer computer word (if that is still not sufficient then time
has come to buy yourself a new computer).

To illustrate our discussion we will use a running example throughout this
paper. The points po, ..., p,., Will always be assumed to appear in increasing
x-order, We have

P={(2,35), (5,17), (12,1), (22,13), (28, 23), (34, 3), (52, 43), (63, 15)}.

3. Stage I: Getting Started. Our starting point is Bentley’s range tree [1] applied
to the set P. This gives us a complete binary tree T on n leaves: (i) the kth leaf
from the left is associated with p,.,; (ii) each node v is associated with the list
L(v) made of the points appearing at the leaves (at or) below v, sorted in
increasing y-order. Figure 2 illustrates this notion. Note that we have conveniently
replaced the name of each point by the value of their ordinate. There is no harm
in this substitution since by assumption no two ordinates can be the same. Nodes
of T have been labeled 4, ..., d in symmetric order. In addition, the leaves are
also shown with the abscissae of the corresponding points.

Given the horizontal segment AB, with A= (a, ¢) and B = (b, ¢), we are now
ready to drag it down. To begin with, we decompose AB into O(log n) so-called
canonical pieces. To do so, we determine the leaf « (resp. 8) whose corresponding
abscissa immediately precedes a (resp. follows b). Let v be the nearest common
ancestor of @ and B. Next, we collect all the nodes v,, v, ..., v, that are either

h
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right children of nodes on the path from the left son of v to « or left children
of nodes on the path from the right son of v to B. Finally, for each i=1,..., p,
we compute the entry of L(v;) whose corresponding ordinate immediately pre-
cedes the value c. Of all the points gathered in this process, we keep the one of
largest ordinate; its index is precisely hit(AB). If no such point is to be found,
we have hit(AB) = n. Turning to our running example, let us try out the method
fora=3, b=37,and ¢ =20. We find @ = a, 8 = i, and v = h. This gives p =3 and

{o1=i=p}={c f, j},

from which we derive three candidate points: p,, p;, and ps. The winner is I,
therefore hit(AB) =1,

Although we have not yet said anything about implementation, it is clear that
by using binary search whenever appropriate we have here all the elements of a
solution in O(n log n) space and O(log” n) query time. Our next task will be to
bring down the storage to O(n).

4. Stage II: Adding Fault-Tolerance. When faced with the task of trimming
down a data structure, it is tempting to remove a fraction of the entries, and to
do so in a uniform way in order to limit the damage. This will fail miserably
here, however, because a single missing entry in T might entail a painful recovery
operation. Looking around locally to retrieve the missing data simply will not
do. This is all the more frustrating as the data structure is so evidently redundant.
The remedy is to make it fault-tolerant. This term is not used here in the traditional
sense. We say that a data structure is fault-tolerant if most of its elementary
components can be reconstructed from their neighbors. For example, given two
arrays of integers A[1:-n] and B[1:-n], where B[1]=A[1] and B[i]=
B[i—-1]+A[i]fori=2,..., n,the array B is clearly fault-tolerant; note, however,
that a random permutation of its entries will likely not be so.

For our purposes here, we use a compaction scheme used previously in Chazelle
[2]. The basic idea is to replace the various occurrences of a given piece of data
in T by single-bit traces. For example, making the convention once and for all
that 0 means left and 1 means right, we replace 17 by 0 in d because 17 also
appears in the left child of the node (observe that it cannot appear in both
children); similarly, 17 in b becomes 1 because it is found in & The transformed
data structure in our running example appears in Figure 3 (ignore the numbers
on the sides for the time being). Obviously, no trace need be stored at the leaves.

The ordinate of the query AB being 20, its location in -L(f) is 4: this means
that L(h) has precisely (4+1) entries less than or equal to 20. For example, the
locations of —5, 35, and 90 are respectively —1, 6, and 7. One key observation is
that to find the location of 20 in d we simply have to count the number of 0's
among the first five traces in the list at i and subtract 1 (the answer is 2); similarly
we locate 20 in [ by counting the number of 1’s in the same sublist and subtracting
1, which gives 1.

Each operation can be carried out in constant time if we supplement traces
with cumulative sums of 1’s, as shown in Figure 3. Note that cumulative sums
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of 0’s are not needed because they can be readily obtained by subtracting the
sum of I's from the current location in the list.

We will now try to convince the reader that the new data structure supports
segment-dragging just as well as the range tree discussed in the previous section.
Of course, we still need two separate lists giving the points of P in x-order and
y-order. With the latter we locate the ordinate of the query (¢ =20) in the root
i (location 4). Next, we jump to d usmg cumulative sums (location 2) and to f
(location 1). From d we also jump to b (location 0) and then on to ¢ (location
0). Finally, from A we jump to T (location 1) and to j (location 0). To summarize,
we now have three candidate points,

¢: location 0,
f_: location 1,
J: location 0,

which we must run off against each other to determine the winner. Observe that
so far the running time is within O(log n).

The problem which we are now facing is to identify a trace, that is, reconnect
itto its corresponding point (note that traces have yet to be used in our discussion).
Referring to a trace as a pair (node, location), let us show how to identify, say,
(A, 5). The sixth trace of A being 1 we must pursue our search with the right child
of h, which is I We transfer locations as usual by determining the number of 1°s
among the first six traces of A and subtracting 1, which yields (7,2). The new
trace now being 0, we proceed to the left and to do so we substract from the
current location the number of 1’s among the first three traces at /, which gives
the pair (J, 1). Finally, a similar operation leads to (i, 0). The identification is
complete after O(log n) steps.

Returning to our running example, we identify (¢, 0), (f, 1), and (. 0) to find
the names of the candidates, p,, ps, and ps. The first of‘ them, p,, is 1mmediately
determined as the winner. The new data structure occupies O(n log n) space and
supports segment-dragging in O(log® n) time per query. In the next section we
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will see that this transformation was not as futile as it may seem right now.
Despite appearances the new data structure is, for our purposes, much better
than the previous one.

5. Stage III: Removing Redundancy. What we have gained by transforming T
as we did is fault-tolerance. Indeed, a missing cumulative sum can be easily
recovered by local examination. A sum can be recovered from another one, d
away, by looking at d traces. This suggests trimming down the structure by
keeping only one cumulative sum out of w=1log n (why this choice of w will
soon be obvious). In our running example, w=3, so at node i we only keep
locations 0, 3, and 6. Since a computer word has room for w bits (actually more,
by our convention that it can assume values between 0 and » log n), we can take
the first w traces of h and store them as one word. This yields 2 = 010,, with the
rest of the sequence giving 5=101, and 1=01,. Figure 4 illustrates the reduced
data structure. Before, we had nw pairs in the structure; now we only have n of
them. Actually, a little more because each node may generate an extra pair if its
size (a term from now on referring to the number of traces at the node) is not a
multiple of w. At any rate, we now have a data structure of size O(n) (with a
rather small constant of proportionality).

Of course, the compaction makes query-answering a little more difficult. To
simulate random access to a given trace, we divide its location by w to find the
word which contains it. Then we truncate the word accordingly. Recall that the
kth least significant bit of a number M is given by the expression

m/24 ) -2 M/2"].

The floor of an mteger division is in the usual repertoire of a RAM, but exponentl-
ation is not. This is not a problem, however; because k=<w, we have 2*=n,
therefore we can comfortably store the first w powers of 2 in an array of size w.
This takes care of traces. To retrieve a cumulative sum, given its location, we
first approximate it by reading the nearest entry stored. Then we add the missing
1's by looking directly into the word M that contains the current trace. After
appropriate truncation, we finally read the desired value in an array one[0- - n ~1],
where one[i]=#1"s in the binary representation of i. All these operations take
constant time. To illustrate the discussion, let us determine the fifth trace of i
and also jump from (/, 4) to I The desired trace appears in the kth (trace) word
of h as the Ith least significant bit, where k= 1+ |5] and [=3k—4; its value is
0. To jump to T we compute the number of 1's among the first five traces of /.

H GOHO ZOHO 210 |20

Fig. 4




)

e S

An Algorithm for Segment-Dragging and Its Implementation 211

As indicated above we take the kth (trace) word, 101,, and bring the current
trace (the Ith least significant bit) to the lowest order position. To do so, we
divide 101, by 2", which gives 10,. Then we look up one[10,] =1, to which we
add the kth cumulative sum explicitly stored (i.e., 1). Subtracting 1 from the
result, we finally obtain the desired location in [, that is, 1. Note that caution
must be used if the current trace lies in the last (trace) word and the size of the
node is not a multiple of w. As it turns out we will circumvent this difficulty
altogether in the actual implementation.

To summarize, we have described a data structure of linear size which supports
segment-dragging in O(log® n) query time. To cut down the query time we must
avoid the identification of every candidate point. The idea is to have the candidates
race against each other as soon as they are discovered rather than wait until they
are all available. The crux is that although two traces from distinct nodes are
incomparable without identification, their ordinates can be immediately compared
if the traces belong to the same node.

6. Stage IV: Avoiding Repeated Identifications. For convenience, we pursue our
discussion with reference to the data structure before the trimming phase. Note
that for our purposes the two structures are functionally equivalent. To illustrate
what follows we return to our running example, Recall that the nodes of interest
(where the traces of the candidate points are to be found) are the right (resp.
left) children of the nodes of the path from d (resp. I) to @ (resp. ). The two
paths play symmetrical roles, so let us restrict ourselves to the one from d to a,
According to the method described earlier, we locate the candidates by their
traces in f and &, giving locations 1 and 0, respectively. Not much can be decided
on the basis of these traces alone because they belong to distinct nodes. If they
were in the same list, however, things would be different. For example, the
candidates have traces at h (locations 2 and 4, respectively) from which, on the
basis of location alone, the second candidate appears as the winner. This suggests
a two-pass approach—one, top-down, to collect traces of candidates and another,
bottom-up, to run them off against each other. A more elegant method consists
of keeping a current winner while going down and then avoiding the second pass
altogether.

At node d the query ordinate (20) falls at location 2 (i.e., there are three points
at d with a lower ordinate). Rather than jumping to node f we can simulate this
process locally while staying at node d. Indeed, it suffices to locate the first trace
equal to 1 at or below location 2. We find location 1, which becomes our current
candidate. At this point we have two locations to keep track of: the query location
(value 2) and the candidate location (value 1). If these locations coincided then
we could stop (why?). Since they do not, we can only infer that the winner has
atrace between these two locations. In our example, the only way for the candidate
to lose out later on would be for location 2 to hold the future winner (which, in
fact, is the case). Next we jump to node b from both query and candidate
locations. This takes us to locations 0 and —1, respectively. Since the trace at
location 0 is precisely 1, the current candidate is updated to that location. For
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two reasons at least we can now stop: the winner has been found and we are
also reaching the bottom of the tree. We can now identify the candidate from its
trace. (Dealing with the path from & to 77 in the same manner and keeping the
higher point gives the final answer.)

Note that at each update of the candidate location it is important to record
the new value separately, otherwise it will be lost at the next jump. This shows
that in general the candidate location does not hold the trace of the current
candidate. For example, at node b the candidate location is —1 before the update,
which corresponds to no point of P whatsoever, whereas the candidate is p,
(discovered at node d).

As a matter of fact the candidate location will often hold the trace of a point
with lower ordinate than the current candidate. For this reason it is imperative
to update the candidate only when the candidate location effectively moves up.
If there is a tie we apply the rule of seniority: the older candidate wins. Of course,
updates of this kind must take place only at the proper turns: left turns from i
to @ and right turns from A to m.

To complete our discussion we must implement a primitive which locates the
next trace equal to 1 at or below a given location. One simple solution consists
of providing each trace with the number of consecutive 0’s right below. Naturally,
by symmetry, we must also keep the number of consecutive 1’s. To mix these
two structures into one, we simply keep the length of the run ending at each
trace. For example, at node d we store the list 1, 2, 1, 2, and at node h we keep
1,1,1,1, 1,1, 1, 1. All these lists require O(n log n) storage, but fortunately they
are highly fault-tolerant. Thus we can sparse them out by discarding all but a
fraction 1/w. This gives 1, 2 in the case of d and 1, 1, 1 in the case of /. To
recover the missing information we just need to keep an array trail[0- - n—1],
where trail[ ] indicates the length of the rightmost run in the binary representation
of i

Although our discussion has been kept informal and special cases have been
conveniently avoided, we nevertheless have all the ingredients at our disposal
for building a working algorithm. The data structure is of size O(n); as we shall
see shortly, it can be constructed in time O(n log n). Answering a query takes
O(log n) time. In the next section we describe the preprocessing in detail. Save
for minor differences it will follow precisely the outline given above,

7. The Preprocessing. We use two constants: maxsize specifies the maximum
size of the arrays (a PASCAL requirement) and maxint is the largest integer used.
For simplicity we declare all arrays to be of the same type.

type
table = array[0. . maxsize] of integer;,

Aside from n and w=1log n, we also have the global variables

var
n, w: integer;
X, Y, Ysort, bit, one, tally, shift, suffix, trail : table;
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In our running example, we have n=8 and w=3. The arrays X and Y give
the coordinates of the points of P sorted in increasing x-order. For convenience,
we set a sentinel Y[n] to —maxint (in our example Y[n]=0 will do); for this
reason we have the condition maxsize = n.

X =2, 5,12, 22, 28, 34, 52, 63,
2 Y =35,17,1, 13, 23, 3, 43, 15, 0,
Ysort =1, 3, 13, 15, 17, 23, 35, 43.

We represent T as an implicit data structure, that is, one without pointers.
Traces, for example, are all stored in a single array of nw bits. The first n bits
- are the traces of the parents of the leaves from left to right (level 1). The next n
bits are the traces at level 2, etc. The array is broken up into pieces of length w,
each fitting into a computer word (note how fortunate it is that the number of
traces should be a multiple of w!). To store cumulative sums we do not use a
local reference system for each node. Instead, we maintain sums of 1’s with
respect to the beginning of a single array. The same holds true of the list of runs.
2 (This justifies our assumption that a computer word should be able to represent

any integer up to nw; as mentioned earlier, this assumption can be easily relaxed.)
: What motivates this decision is the fact that the boundaries of the lists of traces
| do not necessarily coincide with word boundaries in the arrays. We are now
ready to define the remaining variables.

(a) bit. Fori=0,..., n—1,the w least significant bits of bit[i] are the traces
from position iw to position (i +1)w 1. In our running example, the traces being

R —

100110101100010101010101,

we have

bit[0: -n—1]=4, 6, 5, 4, 2, 5, 2, 5.

(b) one. For i=0,...,n—1, one[i] gives the number of 1's among the first
(i+1)w traces, that is, in the binary representation bit[0- i].

one[0:-n—1]=1,3,5,6,7,9, 10, 12.

(c) tally. For i=0,..,,n—1, tally[i] is equal to the number of 1’s in the
binary representation of i.

tally[0- -n—1]=0,1,1,2, 1,2, 2, 3.

(d) shift. For.i=0,...,w, shift[i]=2"

~shift[0 - w]=1,2, 4, 8.
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(e) suffix. For i=0,...,n~1, suffix[i] indicates the length of the longest
suffix in the binary representation of bit[0- - i] that constitutes a run (i.e., with
all bits equal).

suffix[0: -n~1]=2,1,1,2, 1,1, 1, 1.

(f) trail, For i=0,...,n~—1, trail[i] is defined as suffix[i], but now with
respect to the binary representation of i over w bits. Unlike the entries of suffix,
note that no value in trail can exceed w.

trail[0- -n—1]=3,1,1,2,2,1, 1, 3.

To complete this section we give some code to build the arrays above, (No
attempt has been made to optimize the code.) The preprocessing consists of four
procedure calls:

Initialize;
BitDef;
TallyDef;
TrailDef;
OneSufDef;
ShiftDef;

1. Initialize. Sets the values of n, w, X, and Y initializes Ysort to Y and
- clears the array bit to 0.

2. BitDef. Computes the arrays Ysort and bit. The procedure is a variant of
mergesort. It consists of two nested loops. The outer one takes us from one level
in the merge tree to the next one above. The control variable, level, indicates how
many leaves descend from any node at the current level. The value of level grows
geometrically from 2 to 2" = n. The inner loop performs all the merges at the
current level. In the running example, we have four merges at the first level, two
at the second level, etc. Immediately before the merging starts, / is set to the
leftmost entry to be merged and r is set to the rightmost (r = [+ level —1). Between
merges, [ increases by the value level. Turning now to the merging proper, the
variable m indicates the rightmost location of the first list. The three variables /,
r, and m are boundary delimiters; on the contrary, i and j are the running
variables which control the merging (Figure 5). The array T is used as temporary
storage (necessary because the sorting is not in place).

Before merging we copy the values of interest into T (setting T[r -+ 1] to maxint
to be used as a sentinel). The details of the merging are straightforward. Concur-
rently, we accumulate traces in the array bit. The current location in bit is called
index. 1t is updated by keeping track of a counter fill, which oscillates between
0 and w. To add a new trace we first shift the bits of bit[index] to the left to
make room for the newcomer (bit[index]:= 2 x bit[index]). Then, if j is incre-
mented, we set its lower bit to 1 (bit[index]:= bit[index]-+1).
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procedure BitDef
var
fill, index, level, i, j, k, I, m, r: integer;
T: table;
begin
fill:= 0; index = 0; level :=2;
while level <=n do
begin
1:=0;
while I <n do
begin
ri=1+level - 1; m:= (I+r) div 2;
for k:=1to r do T[k]:= Ysort[k],
Tlr+1]=maxint; i:=1; j=m-+1; k:i=1~1;
while (i<=m) or (j<=r) do
begin
bit[index] = 2* bit[index]; k:=k+1;
if (T[j1<T[i]) or (i>m) then
begin
Ysort[k]=T[j]; j=j+1,
bit[index]:=bit[index]+1
end
else
begin
Ysort[k] = T[i]; i=i+1
end;
fill == fill +1;
if fill =w then
begin
index = index-+1; filli=0
end
end;
li=1+level
end;
level = 2* level
- end
end;
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3. TallyDef. Computes the array tally by enumerating the bits of each i
between 0 and n—1.

procedure TallyDef;
var
i, ], t: integer;
begin
fori=0ton—1do
begin
j=1; tally[i]=0;
while j> 0 do
begin
ti=j; j=j div 2; tally[i]:= tally[i] +t—2%]
end
end
end;

4. TrailDef. Computes the array trail in linear time. The idea is to find all
the integers f such that trail[t]=k—1, for k=2,..., w+1. The case k=w+1is
taken care of separately at the beginning. For k=w, we simply enumerate all
possible prefixes of length w — k (variable i), to which we tack on either 1 followed
by k —1 zeros or 0 followed by k — 1 ones. Note that the latter number is derived
from the former by subtracting 1 from it.

procedure TrailDef’
var
i, j, k, 1, t: integer;
begin
trail[0] := w; trail[n—1]=w; 1:=2;
fork=2to w do
begin
1:=2*; ji=n divl-1;
fori:=0to j do
begin
t=i*1+1 div 2; trail[t]=k~—1; trail[t—1]=k—1
end ;
end
end;

5. OneSufDef. Computes the arrays one and suffix, using the arrays tally and
trail, respectively. ‘
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procedure OneSufDef;
var
i: integer;
begin
one[0]:= tally[bit[0]]; suffix[0]:= trail[bit{ 0]];
fori=1to n—1 do
begin
one[i]:= one[i—1]+tally[bit[i]]; suffix[i]:= trail[bit[i]];
if (suffix[i] =w) and not odd(bit[i]+bit[i—1]) then
suffix[i] = suffix[i—1]+w
end
end,

6. ShiftDef. Computes the array shift.

procedure ShiftDef;
var
i: integer;
begin
shift[0]:=1;
for i:=1 to w do shift[i]=2* shift[i—1]
end;

8. Answering a Segment-Dragging Query. We proceed bottom-up, starting with
a few utilities which will be handy later. The function weight computes cumulative
sums. Given a positive integer p, it returns the number of 1's among the first p
traces in bit. Let by, ..., b, ., be the traces in bit[0: - n —1]: we have weight(p) =
Yo<i<p bi. In our running example, we have weight(p) =3, 4, 9 for p=5, 7, 18,
respectively. The implementation is straightforward: locate the word of bit that
contains b, and truncate it accordingly to get the answer via tally and possibly one.

function weight (p: integer): integer;
var
i, j, z: integer;
begin
i=p div w; j=bit[i] div shift[(i+1)*w~p]; z:= tally[j];
if i>0 then z:=z+one[i—1];
weight =z
end;

Similarly, given a positive integer p and an integer b €{0, 1}, run(b, p) returns
the length of the maximal run of the form b, .k, ..., b,-\, b, Where by=b (p—k=
i< p). In our example we have run(1,12) =0 and run(0, 12) =3. Note that we
always have run(0, p) x run(1, p) =0. The implementation is similar to weight,
only slightly more complicated. The only subtle point is that trail[ j] may fail to
give the desired answer when b and j are both 0. Indeed, in that case, trail[ j]= w,
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so we lose the fact that j is a truncated word. Of course, this problem does not
have a symmetric instantiation for 1 (why?)

function run (b, p: integer): integer;
var
i, j, z: integer;
begin
z'=0; i=p div w; j>=bit[i] div shift[(i+1)*w—-p—1];
if j—2*(j div 2) =b then z:= trail[j];
if (j=0) and (b=0) then z==p—i*w+1;
if (z=p~-i*w+1) and (i>0) then
if bit[i—1]-2*(bit[i—1] div 2) =b then z:= suffix[i—1]+z;
run:=z
end;

Next, we attack the problem of jumping from the trace list of a node to the
trace list of one of its children. Before going any further we must address an
important question: how do we specify a node? It is tempting to say that this is
not really an issue because we can directly derive the boundaries of a trace list
in bit given any location in it. This is true, and will actually be used for
identification purposes. However, it is inadequate for jumping. Why? Hint: think
of what happens if the location is the highest in the trace list of a node distinct
from the root. To deal with this problem we characterize a node by specifying
explicitly the location of its first trace. For example, the root is assigned the value
(w—1)n, the leftmost leaf is given the value —n, and its parent is assigned the
value 0. Note that the left and right children of node k =0 are assigned the values
k—n and k—n+c/2, respectively, where ¢ denotes the size of node k. We easily
derive that ¢ =2%/n*!,

We are now ready to implement the function trans which, given a branching
direction—abranch =0 (left) or 1 (right)—a node, and a location p, jumps to the
child (left or right, depending on branch. Recall that, by definition, a number y
has location p at node if, within the trace list of node, b, corresponds to the point
of maximum ordinate less than or equal to y.

function trans (branch, node, p: integer): integer;
var
size: integer;
begin
size = shift[node div n];
if branch =1 then
trans = node ~n+ weight(p+ 1) — weight(node) — 1 +size
else '
trans = p —n+weight(node) — weight(p+1)
end; ‘ ‘

Given a location p in a trace list the function id(p) returns the index of the
point corresponding to the trace at location p. To execute this function, first we
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determine the value of the trace variable (b), and then we call the function trans
as often as needed. As soon as the current location becomes negative, we add n
and we are done.

function id (p: integer): integer;
var
b, j, size: integer;
begin
repeat
size = 2*shift{p div n]; b= p div w;
ji="bit[b] div shift[(b+1)*w—p—1]; b:=j—2%(j div 2);
p:=trans(b, (p div size)*size, p)

until p<0;
idi=p-+n
end;

Next on our list we have a function path which, given an array A[0:-n—1]
of integers sorted in increasing order and an integer g, returns the largest index
i such that g = A[i]. If no such index exists, path(A, q) = 0. The algorithm uses
a simple binary search. (The entry A[n], although accessible, is irrelevant.)

function path (A: table; q: integer): integer;
var
k, 1, r; integer;
begin
=0;ri=n—1;
while 1<r do
begin
k=1++r) div 2;
if q< A[k] then ri=k~1 else I'=k
end;
path =1
end;

The function path will serve two purposes, On the one hand it will allow us
to search for the query ordinate in Ysort. On the other hand it will indicate the
sequence of turns in T which must be taken in order to reach the nodes « and
B and thus decompose the query segment.

Recall that v is the nearest common ancestor of & and B. The contest between
candidates proceeds from v to @ and from v to B, successively. A flag dir is set
to 0 in the first case and 1 in the second case. What arguments should be passed
to a function cand so that it can start off the contest? Aside from dir and. the
initial location p at the root, we-also need the sequence of turns from the root
to a (if dir =0) or B.(if dir =1). This is encoded in the bits of an integer path<n,
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Finally, we also need v; actually its size, denoted break, will do just as well. The
function uses a few local variables: best holds the location of the current candidate.
This is not always the same as the candidate location, denoted try (go back to
Section 6 if this subtle difference no longer makes sense). Initially, try is to set
to the value (w—1)n—1 (one slot below the first trace of the root) and best is
set to —1. This negative value is handy to check if in the end a valid candidate
has been found. A variable size keeps track of the current node size. It is used
to determine when the race should start (size < break). When the branching is
appropriate we test whether best should be updated (try <tmp = p — run(dir, p)).
Note that tmp may not always correspond to a valid candidate. At worst, however,
iry is only one slot below the bottom of the current trace list. Therefore, if we
have tmp > try, then try will automatically correspond to a well-defined candidate
point. To conclude each loop we jump from p and try to the corresponding
locations in the appropriate child. This child is derived from path and size.

function cand (dir, p, path, break: integer): integer;

var
b, best, node, size, tmp, try: integer;
begin
best:= —1; node:= (w=1)*n; try=node - 1; size = n;
repeat

bi=(2*path) div size —2*(path div size);
if (size < break) and (b =dir) then
begin
tmp = p ~run(dir, p);
if try <tmp then

begin
try = tmp;
best i= try
end

end;
p=trans(b, node, p); try:= trans(b, node, try);
size '= size div 2; node = node — n + b*size
until (size=1) or (try =p);
if best>= 0 then cand = id(best) else cand:=n
end;

Finally, the function hit can be implemented. Its parameters are respectively
the left abscissa, the right abscissa, and the ordinate of the query segment. At
the outset, the function path is invoked three times to find (i) the initial query
location (p), (ii) the left path (left), and (iii) the right path (right). Next, a while
loop is used to determine the size (break) of the nearest common ancestor v, and
candidates are determined via two calls on cand. The answer readily follows. -
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function hit (a, b, c: integer): integer;
var
p, i, j, left, right, break: integer;
begin
p:=path(Ysort, ¢)+(w—1)*n; break = n;
left = path(X, a); right:= path(X,b)+1;
while (2* Jeft) div break = (2* right) div break do
break = break div 2;
i=cand(0, p, left, break):
j=cand(1, p, right, break);
if Y[i]<Y[j] then hit:=j else hit:=1i
end;

9. Conclusions. We have completely described a new algorithm for dragging a
segment amidst a set of points in the plane. The data structure requires linear
storage and can be used to answer queries in logarithmic time. Experiments have
shown that the algorithm performs very well in practice.

The purpose of this paper has been twofold: to present a new complexity
result, and to show that the underlying algorithm can be implemented with little
effort. We also hope that the transformational approach taken in explaining the
data structure has been helpful to the reader. We close with an interesting open
problem: designing a dynamic version of the data structure which is both simple
and efficient. At present, we are able to achieve both criteria, but not simul-
taneously.
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